
- •Вероятностные процессы
- •Введение
- •1.Общие свойства случайных фнкций и случайных процесов
- •Определение случайных функций
- •1.2. Моменты конечномерных распределений случайных функций
- •1.3. Основные типы случайных функций и случайных процессов
- •1.3.1. Стационарные процессы
- •1.3.2. Нормальные процессы
- •1.3.3. Эргодические случайные процессы
- •1.3.4. Сингулярные и линейно-сингулярные процессы
- •1.3.5. Процессы с независимыми приращениями
- •1.3.6. Марковские процессы
- •2. Дискретные случайные процессы
- •2.1. Примеры дискретных случайных процессов
- •2.2. Цепи Маркова
- •2.2.2. Матрица вероятностей перехода за n шагов.
- •Классификация состояний марковских цепей
- •Определение 2.8.
- •2.4. Эргодические свойства непериодических цепей. Стационарное распределение.
- •3.Пуассоновские процессы
- •3.1. Примеры пуассоновских процессов в асу.
- •Данные об отказах электронной вычислительной машины
- •3.2. Дифференциальные уравнения для переходных вероятностей
- •3.3. Процесс чистого размножения
- •3.4. Пуассоновские процессы в системах массового обслуживания
- •4.2. Сложение случайных процессов.
- •4.3 Дифференцируемость выборочных функций случайного процесса
- •4.4. Интегрирование случайных процессов
- •5. Представление случайных процессов и случайных функций
- •5.1. Методы описания детерминированных функций
- •5.2. Представление случайных процессов на конечном интервале времени
- •5.3. Интегральные уравнения с корреляционной функцией в качестве ядра
- •5.4. Разложение случайных функций в ряд Карунена-Лоэва
- •5.4.1. Представление винеовского процесса в виде разложения Карунена-Лоэва.
- •5.4.2. Представление процесса типа белого шума
- •5.5. Канонические представления случайных функций
- •5.5.1. Основные определения
- •5.5.2. Общие формулы для координатных функций
- •5.5.3. Каноническое разложение случайной функции в дискретном ряде точек
- •5.5.4. Рекуррентные формулы построения канонического разложения случайной функции.
2. Дискретные случайные процессы
2.1. Примеры дискретных случайных процессов
Исключительно важную роль в задачах анализа и синтеза автоматизированных систем управления играют дискретные случайные процессы.
Дело в том, что в большинстве случаев процесс функционирования АСУ и ее элементов удобно представлять как последовательность выполнения некоторого набора действий (операций по подготовке данных и вводу, выполнение программ, передача данных и т.д.). Эти процессы рассматриваются во времени и одной из основных задач анализа и синтеза АСУ является исследование их временных характеристик, таких, как интервалы времени простоя устройств, времени выполнения программ, изменение производительности вычислительных систем и т. п. Для реальных АСУ типично наличие элементов случайности при инициировании запросов пользователей, в состоянии компонентов комплекс технических средств АСУ, в длительности выполнения программ, связанных с поиском и сортировкой, и т. д. Все эти обстоятельства вынуждают рассматривать процесс функционирования комплекса технических средств АСУ как случайный.
Пример 1. Простейшей моделью вычислительной системы пакетной обработки является модель [ 4 ].
Прочитанные перфокарты с заданиями через буфер ввода оперативной памяти записываются на магнитный диск, где ожидают очереди на выполнение. Выполнение задания (точнее – результаты выполнения заданий) выводятся на магнитный диск и затем через буфер вывода – на печатающее устройство.
В данной системе возможно возникновение очередей: в устройстве ввода с перфокарт, входных заданий на магнитном диске, выходных заданий на магнитном диске.
Предположим, что число заданий, поступающих в течение n – го периода, является случайной величиной, функция распределения которой не зависит от номера периода и имеет вид
(2.1.)
Предположим,
что случайные величины
независимы. Состояние системы в n
– й момент времени определяется как
число заданий, ждущих обслуживания к
началу n
– го периода. Если система находится в
состоянии ???,
то по прошествии одного периода она
перейдет в состояние
если:
при условии, что за период будет выполнено ровно одно задание.
Очевидно,
что если в среднем число заданий,
поступающих во вводную очередь на МД,
будет превышать число заданий, выводимых
из ОП, очередь будет неограниченно
возрастать. Очевидно также, что состояние
вычислительной системы характеризуются
числом
и вероятностью
Пример 2. Этот пример связан с задачами управления запасами и снабжением, решаемых в АСУП.
Рассмотрим
систему, в которую поступает некоторый
товар или некоторое сырье, с целью
постоянного удовлетворения спроса.
Предположим, что пополнение запаса
осуществляется в моменты времени t1,
t2,
….., а суммарный спрос
на товар в интервале времени
представляет собой случайную величину
с распределением
к=0,
1, 2, …,
одинаковым
для всех интервалов, причем
и
Уровень запаса фиксируется в начале каждого периода. Стратегия пополнения запаса такова: если имеющееся количество товара не превышает некоторого критического уровня s*, то производится немедленное пополнение запаса до уровня s > s*. Если же имеющееся количество товара больше s*, то пополнение не производится. Пусть x n обозначает уровень запаса непосредственно перед моментом t n. Пространство состояний процесса {x n } складывается из возможных значений уровня запаса { x n , x n+1, x n+2, …}.
Согласно описанному правилу уровня запаса двух последовательных периодов связаны соотношениями:
если:
где
– суммарный спрос за n – й период. Если
предположить, что случайные величины
независимы, то уровни запаса
образуют марковский процесс с дискретными
состояниями.