Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
1 Лекции_статистика -ОПП.docx
Скачиваний:
1
Добавлен:
01.04.2025
Размер:
1.21 Mб
Скачать

4. Характеристики форми розподілу

Аналіз закономірностей розподілу передбачає оцінювання ступеня однорідності сукупності, асиметрії та ексцесу розподілу.

Однорідність сукупності — передумова використання інших ста­тистичних методів (середніх величин, регресійного аналізу тощо).

В однорідних сукупностях розподіли одновершинні (одномодальні). Багатовершинність свідчить про неоднорідний склад сукупності, про різнотиповість окремих складових. Критерієм однорідності сукупності вважається квадратичний коефіцієнт варіації,

З-поміж одновершинних розподілів є симетричні та асиметричні (скошені), гостро- та плосковершинні. У симетричному розподілі рівновіддалені від центра значення ознаки мають однакові частоти, в асиметричному — вершина розподілу зміщена. Напрям асиметрії протилежен напряму зсуву вершини. Якщо вершина зміщена вліво, то це правостороння асиметрія та навпаки.

В симетричному розподілі характеристики центру мають однакові значення х=Ме=Мо; при правосторонній асиметрії , при лівобічній .

Чим більша асиметрія, тим більше відхилення ( ). Очевидно, найпростішою мірою асиметрії є відносне відхилення , яке характеризує напрям і міру скошеності в середині розподілу; при правосторонній асиметрії , при лівосторонній — .

Іншою властивістю одновершинних розподілів є ступінь зосередженості елементів сукупності навколо центра розподілу. Цю властивість називають ексцесом розподілу.

Асиметрія та ексцес — дві пов’язані з варіацією властивості форми розподілу. Комплексне їх оцінювання виконується на базі моментів розподілу.

Момент розподілу - це середня арифметична k-го ступеню відхилення (х-а). В загальному вигляді момент розподілу розраховується за формулою:

(5.7 а)

або

(5.7 б)

де mk - момент k -го порядку,

х - варіанти ряду,

f - частоти ряду,

n - обсяг вибірки,

k та а - постійні числа.

Залежно від величини а моменти розділяють на початкові а=0, центральні а=х та умовні а=х0, де х0 - деяка варіанта ряду, звичайно близька до його середини. Ступінь k визначає порядок моменту.

Початковий момент k -го порядку виражається формулою:

(5.8)

Центральний момент k -го порядку виражається формулою:

(5.9)

Умовний момент k -го порядку виражається формулою:

(5.10)

Очевидно, що початковий момент 1-го порядку є середня арифметична, 2-го - середній квадрат значень ознаки. Центральний момент 2-го порядку характеризує дисперсію.

Центральни моменти 3-го і 4-го порядків характеризують відповідно асиметрію та ексцес. У симетричному розподілі m3=0. Чим більша скошеність ряду, тим більше значення величини. Для того щоб характеристика скошеності не залежала від масштабу вимірювання ознаки, для порівняння ступеня асиметрії різних розподілів використовується стандартизований момент Аs=m3/3, званий також коефіцієнтом асиметрії, який на відміну від коефіцієнта скошеності залежить від крайніх значень ознаки. При правосторонній асиметрії коефіцієнт Аs>0, при лівобічній Аs<0. Тому правосторонню асиметрію називають позитивною (додатною), а лівобічну – негативною (від'ємною). Вважається, що при Аs<0,25 асиметрія низька, якщо Аs не перевищує 0,5 - середня та при Аs>0,5 - висока.

Для вимірювання ексцесу використовують стандартизований момент 4-го порядку Е=m4/ 4. При симетричному, близькому до нормального розподілі Е=3, при гостровершинному розподілі Е>3, при плосковершинному Е<3.

Розрахунок центральних моментів m3 і m4 за даними інтервального ряду розподілу доцільно проводити за формулами:

(5.11)

де h - ширина інтервалу або будь-яке число,

f - частота або частість інтервалу.

Аналіз закономірностей розподілу можна поглибити, якщо описати його певною функцією.