
- •Вариант №1
- •Вариант №2
- •Вычислить м(х), d(X), если задан ряд распределения случайной величины х:
- •Результаты наблюдений над величинами X и y приведены в следующей таблице:
- •Вариант №3
- •Вычислить м(х), d(X), если задан ряд распределения случайной величины х:
- •Результаты наблюдений над величинами X и y приведены в следующей таблице:
- •Вариант №4
- •Институт выпускает 90% специалистов высокого класса. Найти вероятность того, что среди 700 выпущенных специалистов окажется 20 невысокого класса.
- •Результаты наблюдений над величинами X и y приведены в следующей таблице:
- •Вариант №5
- •Вычислить м(х), d(X), если задан ряд распределения случайной величины х:
- •Результаты наблюдений над величинами X и y приведены в следующей таблице:
- •Вариант №6
- •Вычислить м(х), d(X), если задан ряд распределения случайной величины х:
- •Результаты наблюдений над величинами X и y приведены в следующей таблице:
- •Вариант №7
- •Институт выпускает 80% специалистов высокого класса. Найти вероятность того, что среди 5000 выпущенных специалистов окажется 3700 высокого класса
- •Вычислить м(х), d(X), если задан ряд распределения случайной величины х:
- •Вероятность попадания в цель из орудия при первом выстреле равна 0,7, при втором – 0,3, при третьем – 0,5. Найти закон распределения числа попаданий в цель, если произведено три выстрела.
- •Результаты наблюдений над величинами X и y приведены в следующей таблице:
- •Вариант №8
- •Вычислить м(х), d(X), если задан ряд распределения случайной величины х:
- •В партии из 7 деталей имеется пять деталей первого сорта. Наудачу отобраны 4 детали для проверки. Найти закон распределения числа деталей первого сорта среди отобранных.
- •Результаты наблюдений над величинами X и y приведены в следующей таблице:
- •Вариант №9
- •Результаты наблюдений над величинами X и y приведены в следующей таблице:
- •Вариант №10
- •Вычислить м(х), d(X), если задан ряд распределения случайной величины х:
- •Результаты наблюдений над величинами X и y приведены в следующей таблице:
- •Вариант №11
- •Результаты наблюдений над величинами X и y приведены в следующей таблице:
- •Вариант №12
- •Вычислить м(х), d(X), если задан ряд распределения случайной величины х:
- •Результаты наблюдений над величинами X и y приведены в следующей таблице:
- •Вариант №13
- •Результаты наблюдений над величинами X и y приведены в следующей таблице:
- •Вариант №14
- •Вычислить м(х), d(X), если задан ряд распределения случайной величины х:
- •Результаты наблюдений над величинами X и y приведены в следующей таблице:
- •Вариант №15
- •Результаты наблюдений над величинами X и y приведены в следующей таблице:
- •Вариант №16
- •Вычислить м(х), d(X), если задан ряд распределения случайной величины х:
- •Результаты наблюдений над величинами X и y приведены в следующей таблице:
- •Вариант №17
- •Вероятности землетрясения в каждом из трех городов соответственно равны 0,1; 0,8 и 0,6. Найти вероятность того, что землетрясение произойдет хотя бы в одном городе.
- •Вычислить м(х), d(X), если задан ряд распределения случайной величины х:
- •Результаты наблюдений над величинами X и y приведены в следующей таблице:
- •Вариант №18
- •Вычислить м(х), d(X), если задан ряд распределения случайной величины х:
- •Результаты наблюдений над величинами X и y приведены в следующей таблице:
- •Вариант №19
- •Вычислить м(х), d(X), если задан ряд распределения случайной величины х:
- •Результаты наблюдений над величинами X и y приведены в следующей таблице:
- •Вариант №20
- •Результаты наблюдений над величинами X и y приведены в следующей таблице:
Вычислить м(х), d(X), если задан ряд распределения случайной величины х:
-
Х
1
2
3
4
Р(Х)
??
0,15
0,45
0,2
Производится ряд выстрелов по мишени с вероятностью попадания 0,8 при каждом. Стрельба ведётся до первого попадания в мишень, но не более четырёх выстрелов. Найти закон распределения числа произведённых выстрелов.
Результаты наблюдений над величинами X и y приведены в следующей таблице:
-
X
-1
0
1
4
Y
0
1
2
5
Предполагая, что между X и Y имеется зависимость вида найти неизвестные коэффициенты a, b и c по методу наименьших квадратов. Вычислить Y при .
Для нахождения средней стоимости компьютера определенной комплектации из 500 компьютерных магазинов региона по схеме собственно-случайной бесповторной выборки было отобрано 100 магазинов. Распределение компьютеров по их стоимости представлено в таблице:
Стоимость компьютера, тыс. руб. |
10– –12 |
12– –14 |
14–16 |
16– –18 |
18– –20 |
20–22 |
Итого |
Число магазинов |
3 |
13 |
36 |
26 |
14 |
8 |
100 |
Используя -критерий Пирсона, на уровне значимости α = 0,05 проверить гипотезу о том, что случайная величина Х – стоимость компьютера – распределена равномерно.
Вариант №20
Студент знает 20 вопросов из 30 вопросов программы. Найти вероятность того, что студент ответит на два из четырех заданных вопросов.
Батарея из трех орудий производит залп по цели. Вероятности попадания в цель для каждого из них соответственно равны 0,4; 0,8 и 0,6. Найти вероятность того, что попадет в цель хотя бы одно орудие.
Предприятие обеспечивает регулярный выпуск комплектующих от двух смежников. Вероятность отказа в поставке продукции от первых смежников равна 0,05, от второго – 0,08. Найти вероятность отказа хотя бы одного.
В корзине 3 сорта яблок: 20 – первого, 15 – второго и 25 – третьего. Вероятность высокого содержания сахара в каждом из них соответственно равны 0,5, 0,6, 0,7. Наудачу взятое яблоко оказалось с высоким содержанием сахара. Найти, что это яблоко 1 сорта.
Станок – автомат штампует детали. Вероятность, что изготовленная деталь бракованная равна 0,01. Найти вероятность того, что среди 200 деталей окажется 4 бракованных.
Дискретная величина Х может принимать только два значения: х1 и х2, причем х1 < х2. Вероятность возможного значения х1 равна 0,1, математическое ожидание М(Х) = 3,9 и дисперсия D(X) = 0,09. Составить закон распределения этой случайной величины.
Вычислить М(Х), (Х), если задан ряд распределения случайной величины Х:
-
Х
0
1
2
3
Р(Х)
??
0,15
0,35
0,4