
- •Вариант №1
- •Вариант №2
- •Вычислить м(х), d(X), если задан ряд распределения случайной величины х:
- •Результаты наблюдений над величинами X и y приведены в следующей таблице:
- •Вариант №3
- •Вычислить м(х), d(X), если задан ряд распределения случайной величины х:
- •Результаты наблюдений над величинами X и y приведены в следующей таблице:
- •Вариант №4
- •Институт выпускает 90% специалистов высокого класса. Найти вероятность того, что среди 700 выпущенных специалистов окажется 20 невысокого класса.
- •Результаты наблюдений над величинами X и y приведены в следующей таблице:
- •Вариант №5
- •Вычислить м(х), d(X), если задан ряд распределения случайной величины х:
- •Результаты наблюдений над величинами X и y приведены в следующей таблице:
- •Вариант №6
- •Вычислить м(х), d(X), если задан ряд распределения случайной величины х:
- •Результаты наблюдений над величинами X и y приведены в следующей таблице:
- •Вариант №7
- •Институт выпускает 80% специалистов высокого класса. Найти вероятность того, что среди 5000 выпущенных специалистов окажется 3700 высокого класса
- •Вычислить м(х), d(X), если задан ряд распределения случайной величины х:
- •Вероятность попадания в цель из орудия при первом выстреле равна 0,7, при втором – 0,3, при третьем – 0,5. Найти закон распределения числа попаданий в цель, если произведено три выстрела.
- •Результаты наблюдений над величинами X и y приведены в следующей таблице:
- •Вариант №8
- •Вычислить м(х), d(X), если задан ряд распределения случайной величины х:
- •В партии из 7 деталей имеется пять деталей первого сорта. Наудачу отобраны 4 детали для проверки. Найти закон распределения числа деталей первого сорта среди отобранных.
- •Результаты наблюдений над величинами X и y приведены в следующей таблице:
- •Вариант №9
- •Результаты наблюдений над величинами X и y приведены в следующей таблице:
- •Вариант №10
- •Вычислить м(х), d(X), если задан ряд распределения случайной величины х:
- •Результаты наблюдений над величинами X и y приведены в следующей таблице:
- •Вариант №11
- •Результаты наблюдений над величинами X и y приведены в следующей таблице:
- •Вариант №12
- •Вычислить м(х), d(X), если задан ряд распределения случайной величины х:
- •Результаты наблюдений над величинами X и y приведены в следующей таблице:
- •Вариант №13
- •Результаты наблюдений над величинами X и y приведены в следующей таблице:
- •Вариант №14
- •Вычислить м(х), d(X), если задан ряд распределения случайной величины х:
- •Результаты наблюдений над величинами X и y приведены в следующей таблице:
- •Вариант №15
- •Результаты наблюдений над величинами X и y приведены в следующей таблице:
- •Вариант №16
- •Вычислить м(х), d(X), если задан ряд распределения случайной величины х:
- •Результаты наблюдений над величинами X и y приведены в следующей таблице:
- •Вариант №17
- •Вероятности землетрясения в каждом из трех городов соответственно равны 0,1; 0,8 и 0,6. Найти вероятность того, что землетрясение произойдет хотя бы в одном городе.
- •Вычислить м(х), d(X), если задан ряд распределения случайной величины х:
- •Результаты наблюдений над величинами X и y приведены в следующей таблице:
- •Вариант №18
- •Вычислить м(х), d(X), если задан ряд распределения случайной величины х:
- •Результаты наблюдений над величинами X и y приведены в следующей таблице:
- •Вариант №19
- •Вычислить м(х), d(X), если задан ряд распределения случайной величины х:
- •Результаты наблюдений над величинами X и y приведены в следующей таблице:
- •Вариант №20
- •Результаты наблюдений над величинами X и y приведены в следующей таблице:
В конверте 18 карточек, среди которых 7 разыскиваемых. Наудачу отбирают 3 карточки. Найти закон распределения числа разыскиваемых карточек среди отобранных.
Результаты наблюдений над величинами X и y приведены в следующей таблице:
-
X
0
1
5
6
Y
5
3
4
7
Предполагая, что между X и Y имеется зависимость вида найти неизвестные коэффициенты a, b и c по методу наименьших квадратов. Вычислить Y при .
Данные о продолжительности телефонных разговоров, отобранные по схеме собственно-случайной бесповторной выборки, приведены в таблице:
Время, мин |
1,5––2,5 |
2,5––3,5 |
3,5––4,5 |
4,5––5,5 |
5,5––6,5 |
6,5––7,5 |
7,5––8,5 |
8,5––9,5 |
9,5– –10,5 |
Итого |
Число разговоров |
3 |
4 |
9 |
14 |
37 |
12 |
8 |
8 |
5 |
100 |
Используя -критерий Пирсона, уровне значимости α = 0,05 проверить гипотезу о том, что случайная величина Х – продолжительность телефонных разговоров – распределена равномерно.
Вариант №14
В группе 14 человек, 5 из которых неуспевающих. По списку вызывают сразу шесть человек. Найти вероятность того, что два из них будут неуспевающими.
Вероятности выполнить норму для каждого из трех спортсменов соответственно равны 0,7; 0,85 и 0,9. Найти вероятность того, что ее выполнят только один из них.
Вероятность того, при одном выстреле стрелок попадет в десятку, равна 0,6. Сколько выстрелов должен стрелок, чтобы с вероятностью не менее 0,8 он попал в десятку хотя бы один раз?
Детали, изготовляемые цехом завода, попадают для проверки их на стандартность к одному из двух контролеров. Вероятности того, что деталь попадет к одному из них, соответственно равны 0,6 и 0,4.Вероятность того, что годная деталь будет признана стандартной первым контролером, равна 0,96, а вторым 0,78. Годная деталь при проверке была признана не стандартной. Найти вероятность того, что эту деталь проверил первый контролер.
В новом микрорайоне построен новый дом, в котором 500. Вероятность продажи квартиры в доме равна 0,9. Найти вероятность того, что продано 490.
Дискретная величина Х может принимать только два значения: х1 и х2, причем х1 < х2. Вероятность возможного значения х1 равна 0,4, математическое ожидание М(Х) = 3,6 и дисперсия D(X) = 0,24. Составить закон распределения этой случайной величины.
Вычислить м(х), d(X), если задан ряд распределения случайной величины х:
-
Х
2
3
4
5
Р(Х)
0,18
0,22
??
0,2