
- •Вариант №1
- •Вариант №2
- •Вычислить м(х), d(X), если задан ряд распределения случайной величины х:
- •Результаты наблюдений над величинами X и y приведены в следующей таблице:
- •Вариант №3
- •Вычислить м(х), d(X), если задан ряд распределения случайной величины х:
- •Результаты наблюдений над величинами X и y приведены в следующей таблице:
- •Вариант №4
- •Институт выпускает 90% специалистов высокого класса. Найти вероятность того, что среди 700 выпущенных специалистов окажется 20 невысокого класса.
- •Результаты наблюдений над величинами X и y приведены в следующей таблице:
- •Вариант №5
- •Вычислить м(х), d(X), если задан ряд распределения случайной величины х:
- •Результаты наблюдений над величинами X и y приведены в следующей таблице:
- •Вариант №6
- •Вычислить м(х), d(X), если задан ряд распределения случайной величины х:
- •Результаты наблюдений над величинами X и y приведены в следующей таблице:
- •Вариант №7
- •Институт выпускает 80% специалистов высокого класса. Найти вероятность того, что среди 5000 выпущенных специалистов окажется 3700 высокого класса
- •Вычислить м(х), d(X), если задан ряд распределения случайной величины х:
- •Вероятность попадания в цель из орудия при первом выстреле равна 0,7, при втором – 0,3, при третьем – 0,5. Найти закон распределения числа попаданий в цель, если произведено три выстрела.
- •Результаты наблюдений над величинами X и y приведены в следующей таблице:
- •Вариант №8
- •Вычислить м(х), d(X), если задан ряд распределения случайной величины х:
- •В партии из 7 деталей имеется пять деталей первого сорта. Наудачу отобраны 4 детали для проверки. Найти закон распределения числа деталей первого сорта среди отобранных.
- •Результаты наблюдений над величинами X и y приведены в следующей таблице:
- •Вариант №9
- •Результаты наблюдений над величинами X и y приведены в следующей таблице:
- •Вариант №10
- •Вычислить м(х), d(X), если задан ряд распределения случайной величины х:
- •Результаты наблюдений над величинами X и y приведены в следующей таблице:
- •Вариант №11
- •Результаты наблюдений над величинами X и y приведены в следующей таблице:
- •Вариант №12
- •Вычислить м(х), d(X), если задан ряд распределения случайной величины х:
- •Результаты наблюдений над величинами X и y приведены в следующей таблице:
- •Вариант №13
- •Результаты наблюдений над величинами X и y приведены в следующей таблице:
- •Вариант №14
- •Вычислить м(х), d(X), если задан ряд распределения случайной величины х:
- •Результаты наблюдений над величинами X и y приведены в следующей таблице:
- •Вариант №15
- •Результаты наблюдений над величинами X и y приведены в следующей таблице:
- •Вариант №16
- •Вычислить м(х), d(X), если задан ряд распределения случайной величины х:
- •Результаты наблюдений над величинами X и y приведены в следующей таблице:
- •Вариант №17
- •Вероятности землетрясения в каждом из трех городов соответственно равны 0,1; 0,8 и 0,6. Найти вероятность того, что землетрясение произойдет хотя бы в одном городе.
- •Вычислить м(х), d(X), если задан ряд распределения случайной величины х:
- •Результаты наблюдений над величинами X и y приведены в следующей таблице:
- •Вариант №18
- •Вычислить м(х), d(X), если задан ряд распределения случайной величины х:
- •Результаты наблюдений над величинами X и y приведены в следующей таблице:
- •Вариант №19
- •Вычислить м(х), d(X), если задан ряд распределения случайной величины х:
- •Результаты наблюдений над величинами X и y приведены в следующей таблице:
- •Вариант №20
- •Результаты наблюдений над величинами X и y приведены в следующей таблице:
Контрольная работа «Теория вероятностей и математическая статистика»
Вариант №1
В урне 3 белых и 7 черных шаров. Из урны вынимают сразу пять шаров. Найти вероятность того, что два из них будут белыми.
Вероятности землетрясения в каждом из трех городов соответственно равны 0,1; 0,8 и 0,6. Найти вероятность того, что землетрясение произойдет хотя бы в одном городе.
Вероятность правильного оформления счета на предприятии равна 0,95. Во время аудиторской проверки были взяты два счета. Найти вероятность того, что только один из них будет правильно оформлен.
В корзине 3 сорта яблок: 20 – первого, 15 – второго и 25 – третьего. Вероятность высокого содержания сахара в каждом из них соответственно равны 0,5, 0,6, 0,7. Наудачу взятое яблоко оказалось с высоким содержанием сахара. Найти вероятность того, что оно 2 сорта.
Работают 4 магазина по продаже стиральных машин. Вероятность отказа покупателю в магазинах равна 0,1. Найти вероятность того, что покупатель получит отказ в трех магазинах.
Дискретная величина Х может принимать только два значения: х1 и х2, причем х1 < х2. Вероятность возможного значения х1 равна 0,8, математическое ожидание М(Х) = 3,2 и дисперсия D(X) = 0,16. Составить закон распределения этой случайной величины.
Вычислить М(Х), D(X), если задан ряд распределения случайной величины Х:
Х
-1
0
1
2
Р(Х)
0,15
0,35
0,4
??
В группе 30 студентов, 9 из которых – отличники. На математическую олимпиаду наудачу отобраны 3 студента. Найти закон распределения числа отличников среди отобранных.
Результаты наблюдений над величинами X и Y приведены в следующей таблице:
-
X
1
2
-1
3
Y
2
3
1
4
Предполагая, что
между X и Y
имеется зависимость вида
найти неизвестные коэффициенты a
и b по методу
наименьших квадратов. Вычислить Y
при
.
Для проверки качества поступившей партии зерна по схеме собственно-случайной бесповторной выборки произведено 10%-ное обследование. В результате анализа установлено следующее распределение данных о влажности зерна:
Процент влажности |
Менее 8 |
8–10 |
10–12 |
12–14 |
14–16 |
16– –18 |
18– –20 |
Более 20 |
Итого |
Число проб |
7 |
15 |
30 |
35 |
25 |
18 |
7 |
3 |
140 |
Используя
-критерий
Пирсона, на уровне значимости a
= 0,05 проверить гипотезу о том, что
случайная величина X – процент
влажности зерна – распределена
равномерно.