
- •1 Линейные цепи постоянного тока
- •1.1 Основные понятия теории электричества
- •1.2 Сопротивление проводников. Закон Ома
- •1.3 Работа и мощность электрического тока. Энергетический баланс
- •1.4 Эквивалентные преобразования
- •1.5 Закон Кирхгофа
- •1.6 Потеря напряжения в линиях электропередачи
- •2. Электрические цепи однофазного синусоидального тока
- •2.1 Принцип получения синусоидальной эдс
- •2.2 Параметры переменного тока
- •2.3 Векторные диаграммы
- •2.4 Резистивный, индуктивный и емкостный элементы в цепях синусоидального тока
- •2.5 Цепи синусоидального тока с активно-индуктивной нагрузкой
- •2.6 Последовательная цепь r, l, c. Резонанс напряжений.
- •2.7 Параллельное соединение конденсатора с активно индуктивным токоприемником. Резонанс токов
- •3. Трехфазные электрические цепи
- •3.1. Получение трехфазной системы эдс
- •3.2. Трехфазные цепи при соединении звездой
- •3.3. Трехфазная цепь при соединении нагрузки треугольником
- •3.4. Активная, реактивная и полная мощность трехфазной системы
- •4. Электрические машины постоянного тока
- •4.1 Назначение, устройство машины постоянного тока
- •4.2 Принцип действия машин постоянного тока
- •4.3 Классификация машин постоянного тока по способу возбуждения
- •4.4 Эдс Машин постоянного тока
- •4.5. Электромагнитный момент машин постоянного тока
- •4.6 Генераторы постоянного тока и их характеристики
- •4.7 Двигатели постоянного тока и их характеристики
- •4.8 Реакция якоря в машинах постоянного тока
- •4.9 Коммутация в машинах постоянного тока
- •4.10 Потери мощности в машинах постоянного тока. Кпд
- •5 Трансформаторы
- •5.1 Назначение трансформаторов
- •5.2 Устройство и принцип действия трансформаторов
- •5.3 Уравнение электрического состояния трансформатора
- •5.4 Уравнение магнитного состояния
- •5.5 Векторная диаграмма трансформатора
- •5.6 Схемы замещения трансформатора
- •5.7 Опыт холостого хода трансформатора
- •5.8 Опыт короткого замыкания
- •5.9 Изменение напряжения на зажимах трансформатора при изменении нагрузки. Внешняя характеристика трансформатора
- •5. 10 Потери мощности. Кпд трансформатора
- •6 Асинхронные машины
- •6.1 Устройство асинхронного двигателя
- •6.2. Вращающееся магнитное поле
- •6.3. Принцип действия асинхронного двигателя. Скольжение
- •6.4. Частота тока ротора. Скорость вращения поля ротора.
- •6.5. Эдс и токи в обмотках статора
- •6.6. Эдс и токи в обмотках ротора и их зависимость от скольжения.
- •6.7. Векторная диаграмма асинхронного двигателя.
- •6.8. Схема замещения асинхронного двигателя.
- •6.9 Преобразование энергии в асинхронном двигателе. Кпд.
- •6.10. Коэффициент мощности и рабочие характеристики асинхронного двигателя.
- •6.11. Электромагнитный момент.
- •6.12. Зависимость электромагнитного момента от скольжения и напряжения сети. Механическая характеристика.
- •6.13 Пуск в ход асинхронных двигателей.
- •6.14. Регулирование скорости вращения ротора.
- •6.15. Работа асинхронной машины в режиме генератора и электромагнитного тормоза.
- •7. Синхронные машины.
- •7.1 Назначение синхронных машин.
- •7.2 Устройство синхронных машин.
- •7.3. Принцип действия синхронного генератора.
- •7.4 Уравнение электрического состояния фазы синхронного генератора. Векторная диаграмма.
- •7.5. Принцип действия синхронного двигателя.
- •7.6. Уравнение электрического состояния и векторная диаграмма синхронного двигателя.
- •7.7. Угловая и механическая характеристика синхронного двигателя.
- •7.8. Влияние величины тока возбуждения на коэффициент мощности.
7.3. Принцип действия синхронного генератора.
Если
обмотку возбуждения синхронного
генератора подключить к источнику
постоянного тока, то намагничивающей
силой обмотки возбуждения будет создано
основное магнитное поле, характеризуемое,
магнитным потоком Ф.
Линии магнитной индукции основного
поля проходят по сердечникам ротора и
статора и по воздушному зазору
(см.рис.4.1.), При вращении ротора с
постоянной скоростью с помощью первичного
двигателя магнитное поле тоже будет
вращаться. В результате в трех фазах
обмотки статора будут индуктироваться
ЭДС сдвинутые относительно друг друга
на 120°: Чтобы эти ЭДС изменялись во
времени по синусоидальному закону,
необходимо чтобы индукция вдоль зазора
распределялась по синусоидальному
закону. Это достигается в машинах с
явными полюсами выбором определенной
формы полюсных наконечников; в машинах
с неявнополюсным ротором за счет
соответствующего распределения обмоток
возбуждения по пазам сердечника ротора.
Действующее значение и частота
синусоидальной ЭДС индуцированной в
одной фазе обмотки ротора вращающимся
магнитным полем может быть определено
по формуле; Е0
= сƒФ0.
,
здесь n - скорость вращения ротора и магнитного поля,
Р - число пар полюсов,
w - число витков фазной обмотки статора,
r - обмоточный коэффициент,
Ф0 - магнитный поток, созданный обмоткой возбуждения.
Для
получения частоты ƒ=50Гц
при различных скоростях ротора делается
соответствующее число пар полюсов - у
турбо генераторов, n=3000
об/мин,р=1,
у гидрогенераторов n=50-700
об/мин, р=60-4.Если
к обмотке якоря подключить потребитель
электрической энергии, то под действием
ЭДС в фазах обмотки якоря и потребителя
появляются токи: генератор начинает
отдавать потребителю электрическую
энергию. Величины токов и их фазовые
соотношения зависят, кроме ЭДС и
параметров генератора от величины и
характера нагрузки. Если нагрузка чисто
активная, то фазный ток Iф
и ЭДС
Еф
совпадают по фазе. При работе генератора
с нагрузкой, намагничивающие силы
трехфазной обмотки якоря возбуждают
вращающее магнитное поле якоря. Число
пар полюсов статора и ротора равны, а
значит n0
- скорость вращения магнитного поля
статора
равна
скорости вращения поля обмотки возбуждения
и скорости ротора n.
Рис. 7.2
Приданной нагрузке взаимное расположение полей ротора и статора остаются постоянными, при изменении нагрузки оно меняется. Воздействие намагничивающей силы обмотки якоря на результирующее магнитное поле называется реакцией якоря.
Таким образом, у синхронных машин скорость поля статора равна скорости ротора. Будем считать, что сердечник ротора и статора ненасыщенны, тогда Φо - прямо пропорционален току возбуждения, а Фπ прямо пропорционален току якоря. Результирующей магнитный поток складывается из потока обмотки якоря. Благодаря взаимодействию потока якоря Фπ проводника с током в обмотке возбуждения на ротор действует электромагнитный момент. Для определения этого момента воспользуемся упрощенной картиной двухполюсного генератора.
Рис. 7.3
Обмотка якоря каждой фазы заменена одним витком. Ротор вращается со скоростью n под действием вращающегося момента Мвр первичного двигателя. На рис.7.3. (а) изображено такое положение ротора (и Ф0), при котором ЭДС еа имеет максимальное значение и направлена от конца Х и к началу а фазной обмотки, ЭДС фазы С- ес направлена от начала С к концу Z, ЭДС фазы В.Так же от начала В к концу y (считаем, что нагрузка чисто активная, и токи совпадают по фазе с ЭДС). Значит ток Ia в этот мамонт времени максимален и направлен от Х кА. Направление токов определяет направление магнитного потока Фπ. Так как электромагнитный момент возникает от взаимодействия магнитного потока якоря Фπ, и тока возбуждения Iв, то направление его можно определить по правилу левой руки, определить направление силы действующей на проводники обмотки возбуждения. Электромагнитный момент направлен против скорости вращения ротора и, соответственно, вращающего момента, значит, момент генератора является тормозным. При установившемся рабочем режиме Мвр=М. Если при изменении нагрузки изменяется, то для того, чтобы оставались постоянными ƒ и E0, вращающий момент первичного двигателя тоже необходимо изменить. Величина момента генератора зависит от угла сдвига фаз между током якоря Iπ и ЭДС фазы якоря Е0.При φ= -90° и φ = 90°, как показано на рис.4.3. (б. в.), момент М=0.Если ток отсечет от ЭДС на угол φ = 90° , то максимум тока в фазе а наступит через четверть периода после того как была максимальная ЭДС ротора повернута на 90° против часовой стрелки (см.рис.7.3,(6)). Токи в фазах B и С имеют такое же значение, как и в первом случае, поэтому картина магнитного потока Фπ, такая же. В этом случае ток Iπ взаимодействует с магнитным потоком Ф0 сила Лоренца F = BIlsinφ, направленной по диаметру машины от центра, М=0. Если же ток опережает напряжение, φ=-90°, силы действующего на ротор будут направлены по диаметру к центру М = 0. Момент генератора зависит от характера нагрузки и максимален, если нагрузка чисто активная.