
- •Содержание (Технология программирования)
- •2. Определение алгоритма. Пример алгоритма. Пять основных свойств алгоритма. Сущность алгоритмизации.
- •3. Понятие алгоритмического языка. Основные достоинства и недостатки программирования на алгоритмическом языке
- •4. Языки программирования высокого уровня. Поколения и топология языков программирования высокого уровня с примерами (по г. Бучу).
- •5. Интерпретаторы и компиляторы. «За» и «против». Структура. Понятие Байт-кода (p-Code) в языке Java. Языки 4gl.
- •6. Транслятор. Редактор связей. Загрузчик. Назначение и принципы функционирования.
- •7. Понятие исходного, объектного, загрузочного модулей. Назначение.
- •8. Понятие программы, подпрограммы, функции. Способы передачи и возврата параметров в подпрограммы и функции.
- •9. Основные принципы структурного программирования.
- •10. Модели управления в программных системах: централизованное управление, управление, основанное на событиях.
- •11. Структура событийно-управляемой программы для платформы Win32
- •25. Понятие интерфейса. Язык описания интерфейсов idl (midl).
- •26. Стандартная библиотека шаблонов stl. Основные концепции: контейнер, алгоритм, итератор, поток.
- •27. Представление в машине символьной информации. Кодировки ascii, mbcs, ansi, Unicode. Строки ascii-z, Pascal, bstr.
- •28. Признаки сложных систем согласно общей теории систем. Примеры систем (выделить в них признаки).
- •29. Сложность, присущая программному обеспечению. Составляющие сложности программного обеспечения по ф. Бруксу.
- •3 0. Эволюция системного программного продукта. Понятие и составляющие программы, программного комплекса, программного продукта, системного программного продукта (по ф. Бруксу)
- •31. Борьба со сложностью в программном обеспечении. Эволюция методов анализа и разработки (sa/sd, ooa/ood).
- •32. Жизненный цикл программного обеспечения. Фазы жц, их характеристики артефакты.
- •33. Модели жизненного цикла разработки программного обеспечения. Сравнение моделей.
- •35. Производительность труда программиста. Различия в прогах опытного программиста и новичка по ф. Бруксу.
- •36. Распределение стоимости разработки программного обеспечения по технологическим стадиям создания.
- •37. Язык uml. История создания. Область применения. Виды диаграмм uml для описания системы.
- •38. Программирование на основе шаблонов (паттернов). Роль шаблонов проектирования в борьбе со сложностью программного обеспечения. Будущее шаблонов.
- •39. Понятия связанности (Coupling) и зацепления (Cohesion) в сложных программных системах. Связанность и зацепление классов, модулей, компонентов.
- •40. Ошибки программирования: переполнение буфера. Понятие безопасного программного кода.
- •41. Оптимизация программного кода. Основные возможности оптимизации кода программистом и компилятором.
- •42. Оформление программ: основные пункты.
- •43. Процесс отладки программного обеспечения. Сложность отладки по. Методы поиска и устранения ошибок. Связь отладки с тестированием.
- •44. Понятие качества программного обеспечения. Составляющие и критерии качества. Обеспечение качества как процесс, а не этап. Международный стандарт iso 9000/9001.
- •46. Основы тестирования программного обеспечения методом «чёрный ящик» (функциональное тестирование). Роль прецедентов в функциональном тестировании.
- •47. Основы тестирования программного обеспечения методом «белый ящик» (структурное тестирование).
- •48. Понятие надежного по. Различие между надежностью аппаратуры и по.
- •49. Модели надёжности по. Сравнение моделей оценки надежности по. Перспективы построения «хороших» моделей оценки надежности по.
- •50. Динамические модели надежности программного обеспечения (Шумана).
- •51. Статические модели надежности программного обеспечения (Миллса).
- •52. Case - технологии (инструменты, системы, средства). Эволюция case - средств, их классификация, характеристики современных case - инструментов. Перспективы развития. (По Вендрову, Калянову).
- •53. Классификация средств разработки (case - инструментов).
- •54. Технологический скачок (тс) в программировании. Признаки технологического скачка. Исторические факты технологических скачков.
5. Интерпретаторы и компиляторы. «За» и «против». Структура. Понятие Байт-кода (p-Code) в языке Java. Языки 4gl.
Для преобразования операторов исходного языка программирования в машинные коды используются программы-трансляторы. Существует два больших класса программ-трансляторов: компиляторы и интерпретаторы. Компиляторы – это программы, которые преобразуют исходные тексты программ, написанные на языке программирования высокого уровня, в программу на машинном языке. Полученный код называемый исполняемой программой, записывается в память микропроцессора и далее его можно устанавливать и запускать на нужном компьютере без дополнительных преобразований. Интерпретаторы также преобразуют код, написанный на языке программирования высокого уровня, но при использовании интерпретатора в память микропроцессора записывается исходный текст программы, а трансляция производится построчно, при считывании очередного оператора. Для того чтобы программа была «понятна» компьютеру, на котором предполагается исполнять высокоуровневый код непосредственно, на нем также должна работать программа интерпретации.
Подавляющее большинство интерпретаторов действует так, что исполняет исходную программу последовательно, по мере ее поступления на вход интерпретатора. При таком порядке работы интерпретатора проявляется существенная особенность, которая отличает его от компилятора, — если интерпретатор исполняет команды по мере их поступления, то он не может выполнять оптимизацию исходной программы. Следовательно, фаза оптимизации в общей структуре интерпретатора будет отсутствовать. В остальном же она будет мало отличаться от структуры аналогичного компилятора. Следует только учесть, что на последнем этапе — генерации кода — машинные команды не записываются в объектный файл, а выполняются по мере их порождения.
Естественно, что быстродействие интерпретаторов намного ниже по сравнению с компиляторами, т.к. при использовании оператора в цикле он транслируется многократно.
Байт-код — это промежуточный подход, при котором программа преобразуется в промежуточный двоичный вид, интерпретируемый некой «виртуальной машиной» во время исполнения.
С начала 70-х годов по настоящее время тянется период языков четвертого поколения (4GL). Несмотря на рождение новых технологий (ООП, визуальное программирование, CASE-методологии, системный анализ), процесс создания больших программных комплексов оказался очень трудоемкой задачей, так как для реализации крупных проектов требовался более глобальный подход к решаемым задачам, чем предлагали имевшиеся средства разработки. Языки 4GL частично снимали эту проблему. Целью их создания было в первую очередь стремление к увеличению скорости разработки проектов, снижение числа ошибок и повышение общей надежности работы больших программных комплексов, возможность быстрого и легкого внесения изменений в готовые проекты, упрощение самих языков для конечного пользователя, активное внедрение технологий визуальной разработки и т. д. Все средства разработки 4-го поколения имеют мощные интегрированные оболочки и обладают простым и удобным пользовательским интерфейсом. Они чаще всего используются для проектирования БД и работы с ними (встроенные языки СУБД), что объясняется возможностью формализации всех понятий, используемых при построении реляционных БД.
Языки 4GL активно применяются в различных специализированных областях, где высоких результатов можно добиться, используя не универсальные, а проблемно-ориентированные языки, оперирующие конкретными понятиями узкой предметной области. Как правило, в эти языки встраиваются мощные примитивы, позволяющие одним оператором описать такую функциональность, для реализации которой на языках младших поколений потребовалось бы написать тысячи строк кода. Однако пользователям, использующим языки 4GL для создания законченных приложений, по-прежнему необходимо кодировать программу вручную, используя обычный процесс последовательного ввода команд. При этом сохраняется главный недостаток языков предыдущих поколений. Он заключается в том, что все они в значительной степени ориентированы на чуждую человеческому мышлению чисто компьютерную идеологию (работа с памятью, переменными, базами данных, последовательностями абстрактных операторов), что требует от людей хорошего понимания принципов функционирования компьютера и ОС.