
- •Содержание (Технология программирования)
- •2. Определение алгоритма. Пример алгоритма. Пять основных свойств алгоритма. Сущность алгоритмизации.
- •3. Понятие алгоритмического языка. Основные достоинства и недостатки программирования на алгоритмическом языке
- •4. Языки программирования высокого уровня. Поколения и топология языков программирования высокого уровня с примерами (по г. Бучу).
- •5. Интерпретаторы и компиляторы. «За» и «против». Структура. Понятие Байт-кода (p-Code) в языке Java. Языки 4gl.
- •6. Транслятор. Редактор связей. Загрузчик. Назначение и принципы функционирования.
- •7. Понятие исходного, объектного, загрузочного модулей. Назначение.
- •8. Понятие программы, подпрограммы, функции. Способы передачи и возврата параметров в подпрограммы и функции.
- •9. Основные принципы структурного программирования.
- •10. Модели управления в программных системах: централизованное управление, управление, основанное на событиях.
- •11. Структура событийно-управляемой программы для платформы Win32
- •25. Понятие интерфейса. Язык описания интерфейсов idl (midl).
- •26. Стандартная библиотека шаблонов stl. Основные концепции: контейнер, алгоритм, итератор, поток.
- •27. Представление в машине символьной информации. Кодировки ascii, mbcs, ansi, Unicode. Строки ascii-z, Pascal, bstr.
- •28. Признаки сложных систем согласно общей теории систем. Примеры систем (выделить в них признаки).
- •29. Сложность, присущая программному обеспечению. Составляющие сложности программного обеспечения по ф. Бруксу.
- •3 0. Эволюция системного программного продукта. Понятие и составляющие программы, программного комплекса, программного продукта, системного программного продукта (по ф. Бруксу)
- •31. Борьба со сложностью в программном обеспечении. Эволюция методов анализа и разработки (sa/sd, ooa/ood).
- •32. Жизненный цикл программного обеспечения. Фазы жц, их характеристики артефакты.
- •33. Модели жизненного цикла разработки программного обеспечения. Сравнение моделей.
- •35. Производительность труда программиста. Различия в прогах опытного программиста и новичка по ф. Бруксу.
- •36. Распределение стоимости разработки программного обеспечения по технологическим стадиям создания.
- •37. Язык uml. История создания. Область применения. Виды диаграмм uml для описания системы.
- •38. Программирование на основе шаблонов (паттернов). Роль шаблонов проектирования в борьбе со сложностью программного обеспечения. Будущее шаблонов.
- •39. Понятия связанности (Coupling) и зацепления (Cohesion) в сложных программных системах. Связанность и зацепление классов, модулей, компонентов.
- •40. Ошибки программирования: переполнение буфера. Понятие безопасного программного кода.
- •41. Оптимизация программного кода. Основные возможности оптимизации кода программистом и компилятором.
- •42. Оформление программ: основные пункты.
- •43. Процесс отладки программного обеспечения. Сложность отладки по. Методы поиска и устранения ошибок. Связь отладки с тестированием.
- •44. Понятие качества программного обеспечения. Составляющие и критерии качества. Обеспечение качества как процесс, а не этап. Международный стандарт iso 9000/9001.
- •46. Основы тестирования программного обеспечения методом «чёрный ящик» (функциональное тестирование). Роль прецедентов в функциональном тестировании.
- •47. Основы тестирования программного обеспечения методом «белый ящик» (структурное тестирование).
- •48. Понятие надежного по. Различие между надежностью аппаратуры и по.
- •49. Модели надёжности по. Сравнение моделей оценки надежности по. Перспективы построения «хороших» моделей оценки надежности по.
- •50. Динамические модели надежности программного обеспечения (Шумана).
- •51. Статические модели надежности программного обеспечения (Миллса).
- •52. Case - технологии (инструменты, системы, средства). Эволюция case - средств, их классификация, характеристики современных case - инструментов. Перспективы развития. (По Вендрову, Калянову).
- •53. Классификация средств разработки (case - инструментов).
- •54. Технологический скачок (тс) в программировании. Признаки технологического скачка. Исторические факты технологических скачков.
4. Языки программирования высокого уровня. Поколения и топология языков программирования высокого уровня с примерами (по г. Бучу).
Если проследить короткую историю развития методов программирования, можно выделить две основные тенденции:
1. Перемещение акцентов от программирования отдельных деталей к программированию более крупных компонент.
2. Развитие и совершенствование языков программирования высокого уровня.
Большинство современных коммерческих программных систем существенно сложнее и объемнее, чем их предшественники. Рост сложности обусловил проведение серьезных исследований в области методологии проектирования программных систем; в частности, были разработаны методы декомпозиции, абстрагирования и построения иерархии. Кроме того, были созданы более выразительные языки программирования. Возникла тенденция перехода от процедурных языков программирования (описывающих действия) к декларативным языкам (описывающим ключевые абстракции проблемной области). Вэгнер следующим образом сгруппировал наиболее известные языки программирования высокого уровня в их поколения:
Первое поколение (вторая половина 50-ых годов):
FORTRAN I; ALGOL-58; Flowmatic; IPL V – все это математические формулы.
Второе поколение (начало 60-ых годов):
FORTRAN II: Подпрограммы, раздельная компиляция; ALCOL-60: Блочная структура, типы данных; COBOL: Описание данных, работа с файлами; Lisp: Обработка списков, указатели, сборка мусора
Третье поколение (вторая половина 60-ых, до начала 70-ых):
PL/1 (FORTRAN + ALGOL + COBOL); ALGOL-68: более строгий приемник ALGOL-60; Pascal: более простой приемник ALGOL-60; Simula: классы, абстрактные данные
Потерянное поколение (1970-1980) – Много языков созданных, но мало выживших.
Под топологией языков программирования высокого уровня понимаются основные элементы языка программирования и их взаимодействие.
Топология языков первого и начала второго поколения. Для таких языков, как FORTRAN и COBOL, основным строительным блоком является подпрограмма. Программы, реализованные на таких языках, имеют относительно простую структуру, состоящую только из глобальных данных и подпрограмм. В процессе разработки можно логически разделить разнотипные данные, но механизмы языков практически не поддерживают такого разделения. Ошибка в какой-либо части программы может иметь далеко идущие последствия, так как область данных открыта всем подпрограммам. В больших системах трудно гарантировать целостность данных при внесении изменений в какую-либо часть системы. В процессе эксплуатации уже через короткое время возникает путаница из-за большого количества перекрестных связей между подпрограммами, запутанных схем управления, неясного смысла данных, что угрожает надежности системы и определенно снижает ясность программы.
Топология языков позднего второго и раннего третьего поколения. Начиная с середины 60-х годов стали осознавать роль подпрограмм как важного промежуточного звена между решаемой задачей и компьютером. Использование подпрограмм как механизма абстрагирования имело три существенных последствия. Во-первых, были разработаны языки, поддерживавшие разнообразные механизмы передачи параметров. Во-вторых, были заложены основания структурного программирования, что выразилось в языковой поддержке механизмов вложенности подпрограмм и в научном исследовании структур управления и областей видимости. В-третьих, возникли методы структурного проектирования, стимулирующие разработчиков создавать большие системы, используя подпрограммы как готовые строительные блоки.
Топология языков конца третьего поколения. Для решения задач программирования начал развиваться новый важный механизм структурирования. Разрастание программных проектов означало увеличение размеров и коллективов программистов, а, следовательно, необходимость независимой разработки отдельных частей проекта. Ответом на эту потребность стал отдельно компилируемый модуль, который сначала был просто более или менее случайным набором данных и подпрограмм. В такие модули собирали подпрограммы, которые, будут изменяться совместно. В большинстве языков этого поколения, хотя и поддерживалось модульное программирование, но не вводилось никаких правил, обеспечивающих согласование интерфейсов модулей. Программист, сочиняющий подпрограмму в одном из модулей, мог, например, ожидать, что ее будут вызывать с тремя параметрами: действительным числом, массивом из десяти элементов и целым числом, обозначающим логическое значение. Но в каком-то другом модуле, вопреки предположениям автора, эта подпрограмма могла по ошибке вызываться с фактическими параметрами в виде: целого числа, массива из пяти элементов и отрицательного числа. Аналогично, один из модулей мог завести общую область данных и считать, что это его собственная область, а другой модуль мог нарушить это предположение, свободно манипулируя с этими данными.