
- •Содержание (Технология программирования)
- •2. Определение алгоритма. Пример алгоритма. Пять основных свойств алгоритма. Сущность алгоритмизации.
- •3. Понятие алгоритмического языка. Основные достоинства и недостатки программирования на алгоритмическом языке
- •4. Языки программирования высокого уровня. Поколения и топология языков программирования высокого уровня с примерами (по г. Бучу).
- •5. Интерпретаторы и компиляторы. «За» и «против». Структура. Понятие Байт-кода (p-Code) в языке Java. Языки 4gl.
- •6. Транслятор. Редактор связей. Загрузчик. Назначение и принципы функционирования.
- •7. Понятие исходного, объектного, загрузочного модулей. Назначение.
- •8. Понятие программы, подпрограммы, функции. Способы передачи и возврата параметров в подпрограммы и функции.
- •9. Основные принципы структурного программирования.
- •10. Модели управления в программных системах: централизованное управление, управление, основанное на событиях.
- •11. Структура событийно-управляемой программы для платформы Win32
- •25. Понятие интерфейса. Язык описания интерфейсов idl (midl).
- •26. Стандартная библиотека шаблонов stl. Основные концепции: контейнер, алгоритм, итератор, поток.
- •27. Представление в машине символьной информации. Кодировки ascii, mbcs, ansi, Unicode. Строки ascii-z, Pascal, bstr.
- •28. Признаки сложных систем согласно общей теории систем. Примеры систем (выделить в них признаки).
- •29. Сложность, присущая программному обеспечению. Составляющие сложности программного обеспечения по ф. Бруксу.
- •3 0. Эволюция системного программного продукта. Понятие и составляющие программы, программного комплекса, программного продукта, системного программного продукта (по ф. Бруксу)
- •31. Борьба со сложностью в программном обеспечении. Эволюция методов анализа и разработки (sa/sd, ooa/ood).
- •32. Жизненный цикл программного обеспечения. Фазы жц, их характеристики артефакты.
- •33. Модели жизненного цикла разработки программного обеспечения. Сравнение моделей.
- •35. Производительность труда программиста. Различия в прогах опытного программиста и новичка по ф. Бруксу.
- •36. Распределение стоимости разработки программного обеспечения по технологическим стадиям создания.
- •37. Язык uml. История создания. Область применения. Виды диаграмм uml для описания системы.
- •38. Программирование на основе шаблонов (паттернов). Роль шаблонов проектирования в борьбе со сложностью программного обеспечения. Будущее шаблонов.
- •39. Понятия связанности (Coupling) и зацепления (Cohesion) в сложных программных системах. Связанность и зацепление классов, модулей, компонентов.
- •40. Ошибки программирования: переполнение буфера. Понятие безопасного программного кода.
- •41. Оптимизация программного кода. Основные возможности оптимизации кода программистом и компилятором.
- •42. Оформление программ: основные пункты.
- •43. Процесс отладки программного обеспечения. Сложность отладки по. Методы поиска и устранения ошибок. Связь отладки с тестированием.
- •44. Понятие качества программного обеспечения. Составляющие и критерии качества. Обеспечение качества как процесс, а не этап. Международный стандарт iso 9000/9001.
- •46. Основы тестирования программного обеспечения методом «чёрный ящик» (функциональное тестирование). Роль прецедентов в функциональном тестировании.
- •47. Основы тестирования программного обеспечения методом «белый ящик» (структурное тестирование).
- •48. Понятие надежного по. Различие между надежностью аппаратуры и по.
- •49. Модели надёжности по. Сравнение моделей оценки надежности по. Перспективы построения «хороших» моделей оценки надежности по.
- •50. Динамические модели надежности программного обеспечения (Шумана).
- •51. Статические модели надежности программного обеспечения (Миллса).
- •52. Case - технологии (инструменты, системы, средства). Эволюция case - средств, их классификация, характеристики современных case - инструментов. Перспективы развития. (По Вендрову, Калянову).
- •53. Классификация средств разработки (case - инструментов).
- •54. Технологический скачок (тс) в программировании. Признаки технологического скачка. Исторические факты технологических скачков.
29. Сложность, присущая программному обеспечению. Составляющие сложности программного обеспечения по ф. Бруксу.
Сложность вызывается четырьмя основными причинами:
Сложность реального мира, из которой исходит заказ на разработку. Решаемые с помощью ПО проблемы, часто неизбежно содержат сложные элементы, также к ним предъявляется множество различных, порой взаимоисключающих требований. Если рассмотреть необходимые характеристики электронной системы, достаточно трудно понять, даже в общих чертах, как работает каждая такая система. Эта внешняя сложность обычно возникает из-за того, что пользователи с трудом могут объяснить в форме, понятной разработчикам, что на самом деле нужно сделать. Часто пользователь лишь смутно представляет, что ему нужно от будущей программной системы. Т.к. у пользователей и разработчиков разные взгляды на сущность проблемы, то они часто делают различные выводы о возможных путях ее решения.
Трудности управления процессом разработки. Когда процесс разработки системы предполагает проведения большого объема работ (например, создается большая корпоративная система), то возникают проблемы организации и управления коллективной разработки. Это проблема согласованности и оптимального использования ресурсов.
Необходимость обеспечить достаточную гибкость ПО. Программирование обладает предельной гибкостью, и разработчик может сам обеспечить себя всеми необходимыми элементами, относящимися к любому уровню абстракции. Такая гибкость чрезвычайно соблазнительна. Она заставляет разработчика создавать своими силами все базовые строительные блоки будущей конструкции, из которых составляются элементы более высоких уровней абстракции. В отличие от строительной индустрии, где существуют единые стандарты на многие конструктивные элементы и качество материалов, в программной индустрии таких стандартов почти нет. Поэтому программные разработки остаются очень трудоемким делом.
Проблема описания поведения больших дискретных систем. Большая прикладная система представляет собой систему с дискретными состояниями, т.к. внутри нее могут существовать сотни и даже тысячи переменных и несколько потоков управления. Полный набор этих переменных, их текущих значений, текущего адреса и стека вызова для каждого процесса описывает состояние системы в каждый момент времени. Каждое событие, внешнее по отношению к системе, может перевести ее в новое состояние и, более того, переход из одного состояния в другое не всегда детерминирован. При неблагоприятных условиях внешнее событие может нарушить текущее состояние системы из-за того, что ее создатели не смогли предусмотреть все возможные варианты. В дискретных системах любое внешнее событие может повлиять на любую часть внутреннего состояния системы. Это, и является главной причиной обязательного тестирования систем; но дело в том, что за исключением самых тривиальных случаев, всеобъемлющее тестирование таких программ провести невозможно. И пока нет ни математических инструментов, ни интеллектуальных возможностей для полного моделирования поведения больших дискретных систем, программисты должны удовлетвориться разумным уровнем уверенности в их правильности.