Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Lab6_new.doc
Скачиваний:
0
Добавлен:
01.04.2025
Размер:
102.4 Кб
Скачать

Лабораторная работа № 6

ИЗУЧЕНИЕ ТЕМПЕРАТУРНОЙ ЗАВИСИМОСТИ КОЭФФИЦИЕНТА ВЯЗКОСТИ ЖИДКОСТИ С ПОМОЩЬЮ КАПИЛЛЯРНОГО ВИСКОЗИМЕТРА

Оборудование: капиллярный вискозиметр, аспиратор, стеклянный термостатирующий сосуд, электродвигатель с мешалкой, термометр, электронагреватель, секундомер, стакан для слива воды.

Общие представления

Феноменологически внутреннее трение в подвижных средах (жидкостях и газах) описывается законом вязкости Ньютона [1]

,

где F – сила взаимодействия движущихся слоев на разделяющей их площадке S, а dv/dy – поперечный градиент скорости v их движения. Коэффициент пропорциональности η, стоящий в формуле, характеризует эффективность силового взаимодействия слоев. В системе СГС он измеряется “Пуазах”, а именно 1 Пз = г/(см с).

Молекулярный механизм внутреннего трения в жидкости существенно иной, чем в газе. Это связанно с большой плотностью упаковки в ней микроскопических частиц (молекул): среднее расстояние между ними близко к размеру самих частиц. Поэтому для жидкости теряет смысл представление о длине свободного пробега молекул. (Силы взаимодействия между ними велики и оказывают постоянное влияние на их движение). Вязкость жидкости нельзя трактовать как результат свободного переноса в ней импульса макроскопического движения, поскольку импульс каждой частицы не остается постоянным даже на протяжении кратчайших интервалов времени, но непрерывно меняется.

Тепловое движение частиц в жидкости носит колебательно-диффузионный характер. Большую часть времени выделенная молекула проводит в тесном окружении соседних частиц, совершая малые колебания с периодом τ0 в пределах предоставленной ей потенциальной ямы. Но в результате тепловых флуктуаций такая молекула может получить от соседей избыточную кинетическую энергию, достаточную для преодоления потенциального барьера, созданного её соседями. И тогда, совершив прыжок на некоторое расстояние δ близкое к среднему расстоянию между частицами, выделенная молекула попадает в новое окружение (как бы в соседнюю потенциальную яму), где продолжает свои колебания до следующего прыжка.

В целом картина миграции (переселения) выделенной молекулы жидкости напоминает броуновское движение с той лишь разницей, что её траектория является ломаной линией с одинаковой длиной звеньев равной δ. Другой микроскопической характеристикой данного процесса будет среднее время перемещения на один шаг δ. Оно практически совпадает со средним временем пребывания молекулы в потенциальной яме <t>, поскольку сам прыжок совершается за долю периода τ0.

Фактическое время нахождения частицы в потенциальной яме t является случайной величиной и может не совпадать со значением <t>. Вероятность того, что это время будет не меньше некоторой величины t, задается формулой

,

где τ – постоянная. Из неё легко получить то, что принято называть временем “оседлой жизни” молекулы:

. (1)

По аналогии между процессом выхода частицы из потенциальной ямы и испарением молекулы с поверхности жидкости, Френкель в своей знаменитой книге [2] использовал формулу

, (2)

где k - постоянная Больцмана, T - абсолютная температура, W - энергетическая высота потенциального барьера, названная им энергией активации. Далее, рассматривая миграцию многих частицы как процесс самодиффузии (см., например, [3], [4]) с коэффициентом , он получил выражение

. (3)

С другой стороны, если представлять частицу как маленький шарик с радиусом a, что соответствует модели простых жидкостей, то можно записать формулу Стокса , где f – сила сопротивления, действующая на частицу со стороны вязкой среды при её движении со скоростью u. Из этой формулы следует выражение для подвижности частицы

, (4)

Подставляя его и выражение (3) в соотношение Эйнштейна

, (5)

получаем формулу Френкеля

, (6)

которая выражает зависимость коэффициента вязкости от температуры.

Данная формула хорошо описывает явление вязкости не только в простых (одноатомных), но и в более сложных жидкостях, находящихся при постоянном внешнем давлении. Область ее применимости, однако, ограничена условием τ > τ0, которое выполняется при относительно невысоких температурах.

Сравнение теоретической зависимости величины η от T с опытными данными позволяет найти важные микроскопические характеристики частиц жидкости W и τ0. Такое сравнение удобнее проводить графически в переменных , . Логарифмируя формулу (6), получим уравнение прямой

. (7)

Её график на плоскости переменных x, y будет иметь коэффициент наклона к оси x равный W и будет отсекать на оси y отрезок .

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]