
- •1.Программное обеспечение
- •Виды программ
- •2.Стадии жизненного цикла программного обеспечения
- •2.1.Основные процессы жизненного цикла программного обеспечения
- •2.2.Вспомогательные процессы жизненного цикла программного обеспечения
- •2.3.Организационные процессы жизненного цикла программного обеспечения
- •3.Основные понятия и показатели надежности программных средств
- •3.1.Показатели качества и надежности программного обеспечения
- •3.2.Дестабилизирующие факторы и методы обеспечения надежности функционирования программных средств
- •3.2.1.Модель факторов, определяющих надежность программных средств
- •3.2.2.Методы обеспечения надежности программных средств
- •Предупреждение ошибок
- •Обнаружение ошибок
- •Исправление ошибок
- •Устойчивость к ошибкам
- •Обработка сбоев аппаратуры
- •3.3.Модели надежности программного обеспечения
- •3.3.1.Аналитические модели надежности
- •Динамические модели надежности Модель Шумана
- •Модель La Padula
- •Модель Джелинского – Моранды
- •Модель Шика – Волвертона
- •Модель Мусса
- •Модель переходных вероятностей
- •Статические модели надежности
- •Модель Миллса
- •Модель Липова
- •Простая интуитивная модель
- •Модель Коркорэна
- •Модель Нельсона
- •3.3.2.Эмпирические модели надежности
- •Модель сложности
- •Модель, определяющая время доводки программ
- •3.3.3.Особенности обеспечения надежности функционирования импортных программных средств
- •4.Оценка надежности комплексов аппаратно-программных средств с учетом характеристик программного и информационного обеспечения
- •4.1.Постановка задачи
- •4.2.Общая схема проектной оценки надежности программного комплекса
- •4.2.1.Расчет исходного числа дефектов
- •4.2.2.Расчет остаточного числа дефектов после автономной отладки
- •4.2.3.Расчет остаточного числа дефектов после комплексной отладки
- •4.2.4.Оценка вероятности проявления дефекта при однократном выполнении фсо
- •4.2.5.Оценка вероятности проявления дефектов при многократном выполнении фсо
- •4.2.6.Оценка характеристик потоков инициирующих событий
- •4.2.7.Оценка показателей надежности системы с учетом случайного потока инициирующих событий
- •4.3.Факторные модели
- •4.3.1.Модели распределения числа дефектов в алгоритмах и базах данных
- •4.3.2.Модели распределения дефектов в базах данных
- •4.3.3.Модели эффективности отладки
- •Условная вероятность обнаружения дефекта в км r-го ранга
- •Безусловная вероятность обнаружения дефекта
- •Среднее остаточное число дефектов
- •4.3.4.Модели потоков инициирующих событий
- •4.4.Проектная оценка надежности программного комплекса при выполнении фсо
- •4.4.1.Вероятность проявления дефекта при однократном выполнении фсо
- •4.4.2.Вероятность проявления дефекта при многократном выполнении фсо
- •4.4.3.Вероятность безотказной работы пк в режиме мкцп при случайном потоке инициирующих событий
- •4.4.4.Учет процедур парирования ошибок
- •4.5.Пример проектной оценки надежности программного комплекса
- •4.5.1.Краткое описание аппаратно-программного комплекса
- •4.5.2.Оценка исходного числа дефектов
- •Исходное число дефектов по секциям и алгоритмам
- •Исходное число дефектов в секциях ввода и вывода
- •4.5.3.Оценка числа дефектов фпо по подсистемам до автономной отладки
- •Состав подсистем фпо
- •Исходное число дефектов в подсистемах до автономной отладки
- •4.5.4.Оценка остаточного числа дефектов после автономной отладки
- •Среднее остаточное число дефектов в секциях после ао
- •Результаты автономной отладки (вариант 1)
- •Длина тестовой последовательности после m-й серии
- •Зависимость эффективности ао от трудоемкости
- •4.5.5.Оценка остаточного числа дефектов после комплексной отладки
- •Результаты комплексной отладки
- •Коэффициент полноты отладки км различных рангов
- •4.5.6.Оценка вероятности проявления дефекта при однократном и многократном выполнении фсо после ко
- •Распределение вероятностей проявления дефекта по км
- •Вероятность проявления дефекта при однократном выполнении фсо
- •Вероятность проявления дефектов при многократном выполнении фсо
- •Вероятность проявления дефектов бд до отладки
- •Условная вероятность проявления дефектов бд после автономной отладки
- •Безусловная вероятность проявления дефектов бд после автономной отладки
- •Условная вероятность проявления дефектов бд после комплексной отладки
- •Безусловная вероятность проявления дефектов бд после комплексной отладки
- •Вероятность отказа фпо и ио при однократном выполнении фсо
- •4.5.7.Поток инициирующих событий
- •4.5.8.Вероятность безотказной работы пк
- •Интенсивность отказов подсистем
- •Показатели надежности подсистем
- •Показатели надежности подсистем с учетом парирования ошибок в ио
- •4.6.Оценка надежности программного комплекса по результатам отладки и нормальной эксплуатации
- •Экспоненциальная модель Шумана
- •Экспоненциальная модель Джелинского−Моранды
- •Геометрическая модель Моранды
- •Модель Шика−Волвертона
- •Модель Липова
- •Модель Мусы−Гамильтона
- •Вейбулловская модель (модель Сукерта)
- •Модель Уолла−Фергюссоиа (степенная модель)
- •Структурная модель Нельсона
- •Структурная модель роста надежности
- •Гиперболическая модель роста надежности
- •5.Литература
Длина тестовой последовательности после m-й серии
Наименование |
п |
L |
|
|
|
|
т = 8 |
m = 9 |
m=10 |
Секция А21 |
14 |
12 911 |
14 913 |
15 914 |
Секция А22 |
10 |
1013 |
1023 |
1024 |
Алгоритм A3 |
17 |
65 536 |
89 846 |
109 294 |
Алгоритм А7 |
20 |
263 950 |
431 910 |
616 666 |
Алгоритм А8 |
12 |
3797 |
4017 |
4083 |
Секция БУ1 |
17 |
65 536 |
89 846 |
109 294 |
Секция БУ2 |
11 |
1981 |
2036 |
2047 |
Секции А21...А8 |
- |
347 207 |
541 709 |
746 981 |
Алгоритмы А1...А8 |
- |
348 774 |
543 277 |
748 549 |
БУ1, БУ2 |
- |
67 517 |
91 882 |
111 341 |
А1...А8, БУ1, БУ2 |
- |
416 291 |
635 159 |
859 890 |
Для алгоритма А7 переход от m= 8кm= 9 означает увеличение трудоемкости отладки на 63,6%, а переход от m= 9к m=10 − увеличение на 42,8%. Переход от т= 9 к т= 10 приводит к увеличению L: для A3 и БУ на 21,6%, для всех алгоритмов А1...А8 на 37,8%, по секциям БУ на 21,1%, по ФПО в целом на 35,4%.
Степень снижения остаточного числа дефектов и рост эффективности отладка можно проследить по данным, приводимым в табл. 4.11.
Таблица 4.11
Зависимость эффективности ао от трудоемкости
ФСО |
т |
L |
|
|
|
АУ, ДУ |
9 |
635 159 |
0,876 |
0,969 |
- |
АУ, ДУ |
10 |
859 890 |
0,403 |
0,986 |
0,354 |
ОП |
9 |
543 277 |
0,424 |
0,974 |
- |
ОП |
10 |
748 277 |
06207 |
0,987 |
0,377 |
Для АУ и ДУ увеличение эффективности отладки на 1,7% требует увеличения трудоемкости на 35,4%. Для ОП рост эффективности на 1,3% требует увеличения трудоемкости на 37,7%.
4.5.5.Оценка остаточного числа дефектов после комплексной отладки
Комплексная отладка проводится по подсистемам в целом и имеет целью функциональное тестирование и тестирование межсекционных и внешних связей Остаточное число дефектов и эффективность отладки прогнозируются с помощью модели КМ.
Результаты расчетов вероятности
необнаружения дефекта
и среднего остаточного числа дефектов
по формулам (10.23) и (10.25) для двухканальной
системы при
приведены в табл. 4.12. Данные для
взяты из табл. 4.9.
Таблица 4.12