
- •1.Программное обеспечение
- •Виды программ
- •2.Стадии жизненного цикла программного обеспечения
- •2.1.Основные процессы жизненного цикла программного обеспечения
- •2.2.Вспомогательные процессы жизненного цикла программного обеспечения
- •2.3.Организационные процессы жизненного цикла программного обеспечения
- •3.Основные понятия и показатели надежности программных средств
- •3.1.Показатели качества и надежности программного обеспечения
- •3.2.Дестабилизирующие факторы и методы обеспечения надежности функционирования программных средств
- •3.2.1.Модель факторов, определяющих надежность программных средств
- •3.2.2.Методы обеспечения надежности программных средств
- •Предупреждение ошибок
- •Обнаружение ошибок
- •Исправление ошибок
- •Устойчивость к ошибкам
- •Обработка сбоев аппаратуры
- •3.3.Модели надежности программного обеспечения
- •3.3.1.Аналитические модели надежности
- •Динамические модели надежности Модель Шумана
- •Модель La Padula
- •Модель Джелинского – Моранды
- •Модель Шика – Волвертона
- •Модель Мусса
- •Модель переходных вероятностей
- •Статические модели надежности
- •Модель Миллса
- •Модель Липова
- •Простая интуитивная модель
- •Модель Коркорэна
- •Модель Нельсона
- •3.3.2.Эмпирические модели надежности
- •Модель сложности
- •Модель, определяющая время доводки программ
- •3.3.3.Особенности обеспечения надежности функционирования импортных программных средств
- •4.Оценка надежности комплексов аппаратно-программных средств с учетом характеристик программного и информационного обеспечения
- •4.1.Постановка задачи
- •4.2.Общая схема проектной оценки надежности программного комплекса
- •4.2.1.Расчет исходного числа дефектов
- •4.2.2.Расчет остаточного числа дефектов после автономной отладки
- •4.2.3.Расчет остаточного числа дефектов после комплексной отладки
- •4.2.4.Оценка вероятности проявления дефекта при однократном выполнении фсо
- •4.2.5.Оценка вероятности проявления дефектов при многократном выполнении фсо
- •4.2.6.Оценка характеристик потоков инициирующих событий
- •4.2.7.Оценка показателей надежности системы с учетом случайного потока инициирующих событий
- •4.3.Факторные модели
- •4.3.1.Модели распределения числа дефектов в алгоритмах и базах данных
- •4.3.2.Модели распределения дефектов в базах данных
- •4.3.3.Модели эффективности отладки
- •Условная вероятность обнаружения дефекта в км r-го ранга
- •Безусловная вероятность обнаружения дефекта
- •Среднее остаточное число дефектов
- •4.3.4.Модели потоков инициирующих событий
- •4.4.Проектная оценка надежности программного комплекса при выполнении фсо
- •4.4.1.Вероятность проявления дефекта при однократном выполнении фсо
- •4.4.2.Вероятность проявления дефекта при многократном выполнении фсо
- •4.4.3.Вероятность безотказной работы пк в режиме мкцп при случайном потоке инициирующих событий
- •4.4.4.Учет процедур парирования ошибок
- •4.5.Пример проектной оценки надежности программного комплекса
- •4.5.1.Краткое описание аппаратно-программного комплекса
- •4.5.2.Оценка исходного числа дефектов
- •Исходное число дефектов по секциям и алгоритмам
- •Исходное число дефектов в секциях ввода и вывода
- •4.5.3.Оценка числа дефектов фпо по подсистемам до автономной отладки
- •Состав подсистем фпо
- •Исходное число дефектов в подсистемах до автономной отладки
- •4.5.4.Оценка остаточного числа дефектов после автономной отладки
- •Среднее остаточное число дефектов в секциях после ао
- •Результаты автономной отладки (вариант 1)
- •Длина тестовой последовательности после m-й серии
- •Зависимость эффективности ао от трудоемкости
- •4.5.5.Оценка остаточного числа дефектов после комплексной отладки
- •Результаты комплексной отладки
- •Коэффициент полноты отладки км различных рангов
- •4.5.6.Оценка вероятности проявления дефекта при однократном и многократном выполнении фсо после ко
- •Распределение вероятностей проявления дефекта по км
- •Вероятность проявления дефекта при однократном выполнении фсо
- •Вероятность проявления дефектов при многократном выполнении фсо
- •Вероятность проявления дефектов бд до отладки
- •Условная вероятность проявления дефектов бд после автономной отладки
- •Безусловная вероятность проявления дефектов бд после автономной отладки
- •Условная вероятность проявления дефектов бд после комплексной отладки
- •Безусловная вероятность проявления дефектов бд после комплексной отладки
- •Вероятность отказа фпо и ио при однократном выполнении фсо
- •4.5.7.Поток инициирующих событий
- •4.5.8.Вероятность безотказной работы пк
- •Интенсивность отказов подсистем
- •Показатели надежности подсистем
- •Показатели надежности подсистем с учетом парирования ошибок в ио
- •4.6.Оценка надежности программного комплекса по результатам отладки и нормальной эксплуатации
- •Экспоненциальная модель Шумана
- •Экспоненциальная модель Джелинского−Моранды
- •Геометрическая модель Моранды
- •Модель Шика−Волвертона
- •Модель Липова
- •Модель Мусы−Гамильтона
- •Вейбулловская модель (модель Сукерта)
- •Модель Уолла−Фергюссоиа (степенная модель)
- •Структурная модель Нельсона
- •Структурная модель роста надежности
- •Гиперболическая модель роста надежности
- •5.Литература
Среднее остаточное число дефектов
Модель |
|
|
|
|
|
т=1 |
m=2 |
т=3 |
т=4 |
KM |
0,9 |
0,375 |
0,100 |
0,0075 |
Средняя |
0,9 |
0,278 |
0,102 |
0,027 |
Нижняя гарантированная оценка вероятности безотказной работы, рассчитанная по формуле (10.27), составляет 0,66 при m=2 и 0,9 при m=3.
Для баз данных можно рассмотреть две стратегии отладки.
Отладка всего объема
проводится автономно и независимо от ФСО. Если на каждом шаге тестирования проверяется объем
, а исходное число дефектов
известно, то количество дефектов в объеме
имеет биномиальное распределение с параметрами
и
. При отладке происходит «просеивание» дефектов с вероятностью, равной коэффициенту эффективности отладки α. Значение α оценивается по статистическим данным предыдущих опытов отладки. Остаточное число дефектов определяют по формуле
. Если отладка разделена на автономную и комплексную, то остаточное число дефектов после автономной и комплексной отладки
Отладка проводится только в той части
общего объема
, которая используется при выполнении конкретной ФСО. Дефекты обнаруживаются в процессе многократного выполнения ФСО на тестовых задачах или в процессе эксплуатации. Эффективность отладки для этой стратегии будет рассмотрена далее.
4.3.4.Модели потоков инициирующих событий
Запуск ФСО в режиме МКЦП происходит либо по расписанию, либо при появлении случайных событий определенного типа. Первый способ возникает при опросе пассивных дискретных датчиков (ДД), при появлении регулярных сигналов от смежных систем или команд от оперативного персонала. Случайные инициирующие события (ИС) возникают по сигналам инициативных ДД, логических схем сравнения показаний аналоговых датчиков (АД) с уставками. Инициирующим событием является любое изменение состояния ДД, достижение аналоговым параметром уровня уставки, изменение состояния любого исполнительного механизма (самопроизвольное или по командам дистанционного управления). В реальных условиях потоки инициирующих событий определяются динамикой изменения физико-химических и технологических процессов в объекте управления, надежностью средств автоматики, контроля и управления, стратегией дистанционного автоматизированного управления.
Потоки ИС первого типа, получаемые на регулярной основе, близки по своим характеристикам к стационарным рекуррентным потокам с постоянной интенсивностью. Потоки ИС второго типа близки к стационарным пуассоновским потокам.
Потоки обоих типов являются суммами некоторого количества независимых слагаемых потоков. Поэтому интенсивность суммарного потока находят как сумму интенсивностей слагаемых потоков:
где
−
интенсивность потока ИС, обусловленного
изменениями технологических процессов
в объекте управления;
−
интенсивность суммарного потока отказов
технических средств управления;
− интенсивность потока заявок от
подсистемы дистанционного управления;
− интенсивность потока регулярных ИС.