
- •1.Программное обеспечение
- •Виды программ
- •2.Стадии жизненного цикла программного обеспечения
- •2.1.Основные процессы жизненного цикла программного обеспечения
- •2.2.Вспомогательные процессы жизненного цикла программного обеспечения
- •2.3.Организационные процессы жизненного цикла программного обеспечения
- •3.Основные понятия и показатели надежности программных средств
- •3.1.Показатели качества и надежности программного обеспечения
- •3.2.Дестабилизирующие факторы и методы обеспечения надежности функционирования программных средств
- •3.2.1.Модель факторов, определяющих надежность программных средств
- •3.2.2.Методы обеспечения надежности программных средств
- •Предупреждение ошибок
- •Обнаружение ошибок
- •Исправление ошибок
- •Устойчивость к ошибкам
- •Обработка сбоев аппаратуры
- •3.3.Модели надежности программного обеспечения
- •3.3.1.Аналитические модели надежности
- •Динамические модели надежности Модель Шумана
- •Модель La Padula
- •Модель Джелинского – Моранды
- •Модель Шика – Волвертона
- •Модель Мусса
- •Модель переходных вероятностей
- •Статические модели надежности
- •Модель Миллса
- •Модель Липова
- •Простая интуитивная модель
- •Модель Коркорэна
- •Модель Нельсона
- •3.3.2.Эмпирические модели надежности
- •Модель сложности
- •Модель, определяющая время доводки программ
- •3.3.3.Особенности обеспечения надежности функционирования импортных программных средств
- •4.Оценка надежности комплексов аппаратно-программных средств с учетом характеристик программного и информационного обеспечения
- •4.1.Постановка задачи
- •4.2.Общая схема проектной оценки надежности программного комплекса
- •4.2.1.Расчет исходного числа дефектов
- •4.2.2.Расчет остаточного числа дефектов после автономной отладки
- •4.2.3.Расчет остаточного числа дефектов после комплексной отладки
- •4.2.4.Оценка вероятности проявления дефекта при однократном выполнении фсо
- •4.2.5.Оценка вероятности проявления дефектов при многократном выполнении фсо
- •4.2.6.Оценка характеристик потоков инициирующих событий
- •4.2.7.Оценка показателей надежности системы с учетом случайного потока инициирующих событий
- •4.3.Факторные модели
- •4.3.1.Модели распределения числа дефектов в алгоритмах и базах данных
- •4.3.2.Модели распределения дефектов в базах данных
- •4.3.3.Модели эффективности отладки
- •Условная вероятность обнаружения дефекта в км r-го ранга
- •Безусловная вероятность обнаружения дефекта
- •Среднее остаточное число дефектов
- •4.3.4.Модели потоков инициирующих событий
- •4.4.Проектная оценка надежности программного комплекса при выполнении фсо
- •4.4.1.Вероятность проявления дефекта при однократном выполнении фсо
- •4.4.2.Вероятность проявления дефекта при многократном выполнении фсо
- •4.4.3.Вероятность безотказной работы пк в режиме мкцп при случайном потоке инициирующих событий
- •4.4.4.Учет процедур парирования ошибок
- •4.5.Пример проектной оценки надежности программного комплекса
- •4.5.1.Краткое описание аппаратно-программного комплекса
- •4.5.2.Оценка исходного числа дефектов
- •Исходное число дефектов по секциям и алгоритмам
- •Исходное число дефектов в секциях ввода и вывода
- •4.5.3.Оценка числа дефектов фпо по подсистемам до автономной отладки
- •Состав подсистем фпо
- •Исходное число дефектов в подсистемах до автономной отладки
- •4.5.4.Оценка остаточного числа дефектов после автономной отладки
- •Среднее остаточное число дефектов в секциях после ао
- •Результаты автономной отладки (вариант 1)
- •Длина тестовой последовательности после m-й серии
- •Зависимость эффективности ао от трудоемкости
- •4.5.5.Оценка остаточного числа дефектов после комплексной отладки
- •Результаты комплексной отладки
- •Коэффициент полноты отладки км различных рангов
- •4.5.6.Оценка вероятности проявления дефекта при однократном и многократном выполнении фсо после ко
- •Распределение вероятностей проявления дефекта по км
- •Вероятность проявления дефекта при однократном выполнении фсо
- •Вероятность проявления дефектов при многократном выполнении фсо
- •Вероятность проявления дефектов бд до отладки
- •Условная вероятность проявления дефектов бд после автономной отладки
- •Безусловная вероятность проявления дефектов бд после автономной отладки
- •Условная вероятность проявления дефектов бд после комплексной отладки
- •Безусловная вероятность проявления дефектов бд после комплексной отладки
- •Вероятность отказа фпо и ио при однократном выполнении фсо
- •4.5.7.Поток инициирующих событий
- •4.5.8.Вероятность безотказной работы пк
- •Интенсивность отказов подсистем
- •Показатели надежности подсистем
- •Показатели надежности подсистем с учетом парирования ошибок в ио
- •4.6.Оценка надежности программного комплекса по результатам отладки и нормальной эксплуатации
- •Экспоненциальная модель Шумана
- •Экспоненциальная модель Джелинского−Моранды
- •Геометрическая модель Моранды
- •Модель Шика−Волвертона
- •Модель Липова
- •Модель Мусы−Гамильтона
- •Вейбулловская модель (модель Сукерта)
- •Модель Уолла−Фергюссоиа (степенная модель)
- •Структурная модель Нельсона
- •Структурная модель роста надежности
- •Гиперболическая модель роста надежности
- •5.Литература
3.3.1.Аналитические модели надежности
Аналитическое моделирование надежности ПО включает четыре шага:
1) определение предположений, связанных с процедурой тестирования ПО;
2) разработка или выбор аналитической модели, базирующейся на предположениях о процедуре тестирования;
3) выбор параметров моделей с использованием полученных данных;
4) применение модели − расчет количественных показателей надежности по модели.
Динамические модели надежности Модель Шумана
Исходные данные для модели Шумана, которая относится к динамическим моделям дискретного времени, собираются в процессе тестирования ПО в течение фиксированных или случайных временных интервалов. Каждый интервал − это стадия, на которой выполняется последовательность тестов и фиксируется некоторое число ошибок.
Модель Шумана может быть использована при определенным образом организованной процедуре тестирования. Использование модели Шумана предполагает, что тестирование проводится в несколько этапов. Каждый этап представляет собой выполнение программы на полном комплексе разработанных тестовых данных. Выявленные ошибки регистрируются (собирается статистика об ошибках), но не исправляются. По завершении этапа на основе собранных данных о поведении ПО на очередном этапе тестирования может быть использована модель Шумана для расчета количественных показателей надежности. После этого исправляются ошибки, обнаруженные на предыдущем этапе, при необходимости корректируются тестовые наборы и проводится новый этап тестирования. При использовании модели Шумана предполагается, что исходное количество ошибок в программе постоянно и в процессе тестирования может уменьшаться по мере того, как ошибки выявляются и исправляются. Новые ошибки при корректировке не вносятся. Скорость обнаружения ошибок пропорциональна числу оставшихся ошибок. Общее число машинных инструкций в рамках одного этапа тестирования постоянно.
Предполагается, что до
начала тестирования в ПО имеется ET
ошибок. В течение времени тестирования
τ
обнаруживается
ошибок в расчете на команду в машинном
языке.
Таким образом, удельное число ошибок на одну машинную команду, оставшихся в системе после τ времени тестирования, равно:
, (1)
где IT − общее число машинных команд, которое предполагается постоянным в рамках этапа тестирования.
Автор предполагает, что значение функции частоты отказов Z(t) пропорционально числу ошибок, оставшихся в ПО после израсходованного на тестирование времени τ:
,
где С − некоторая константа; t − время работы ПО без отказа.
Тогда, если время работы ПО без отказа t отсчитывается от точки t=0, а τ остается фиксированным; функция надежности, или вероятность безотказной работы на интервале времени от 0 до t, равна:
Из величин, входящих в
формулы (2) и (3), не известны начальное
значение ошибок в ПО
и
коэффициент пропорциональности С.
Для их определения прибегают к следующим
рассуждениям. В процессе тестирования
собирается информация о времени и
количестве ошибок на каждом прогоне,
т.е. общее время тестирования
складывается
из времени каждого прогона:
Предполагая, что интенсивность
появления ошибок постоянна и равна
,
можно вычислить ее как число ошибок в
единицу времени:
где
− количество ошибок на
-м
прогоне;
Имея данные для двух различных
моментов тестирования
и
,
которые выбираются произвольно с учетом
требования, чтобы
,
можно сопоставить уравнения (3) и (5) при
и
Вычисляя отношения (6) и (7), получим:
Подставив полученную оценку
параметров
в
выражение (6), получим оценку для второго
неизвестного параметра:
Получив неизвестные
и
,
можно рассчитать надежность программы
по формуле (2).