Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ответы 1-7.docx
Скачиваний:
2
Добавлен:
01.04.2025
Размер:
92.03 Кб
Скачать

5.Коагулянты и флокулянты применяемые для осветления воды. Определение оптимальных доз реагентов.

Коагулянты – вещества, способствующие объединению мелких частиц дисперсных систем в более крупные под влиянием сил сцепления. Применение коагулянтов производится с целью снижения окисляемости обрабатываемой воды, содержания взвешенных веществ, уменьшения общей щелочности и улучшения основных технологических процессов обработки воды, происходящих в осветлителях и очистных сооружениях.

Флокулянты – это вещества, ускоряющие слипание агрегативно неустойчивых частиц в обрабатываемой воде, тем самым интенсифицирующих процесс образования хлопьев и увеличивающих их размеры. Ввод флокулянта в обрабатываемую воду позволяет улучшить осветление воды и фактическую производительность осветлителей, качество обрабатываемой воды по ряду контролируемых показателей. Так, например, снижается общая щелочность (на 55 – 70 %), значительно снижается содержание общего железа (до 30 – 55 %), а взвешенных веществ в 3-5 раз.

Общепринятой практикой при разработке технологии применения коагулянта и флокулянта является выполнение на первом этапе лабораторной оценки. Это обычно дает определенное представление о наиболее подходящем виде обработки и некоторую информацию о возможном улучшении ведения процесса очистки.

Для исчерпывающей оценки преимуществ использования коагулянта и флокулянта в системах осветления воды требуется выполнение промышленных и полупромышленных испытаний. Испытания проводятся с целью определения параметров обработки, уточнения дозы вводимого реагента и точек ввода.

Определение оптимальных доз реагентов

Под оптимальной дозой коагулянта понимается та минимально возможная в данных условиях доза, которая обеспечивает выполнение требований СанПиН по основным нормативным показателям.

Доза коагулянта для вод разного состава не одинакова и устанавливается путем пробного коагулирования исходной воды в лаборатории. Оптимальная доза коагулянта вызывает образование крупных, быстро декантирующих хлопьев и не дает опалесценции воды. Существует методика определения показателя коагулируемости воды, под которым понимается способность к коагуляции грубодисперсных и коллоидных примесей, присутствующих в воде, при обработке ее коагулянтом — сернокислым алюминием, проводимой как без подщелачивания воды, так и с ее подщелачиванием. Для ориентировочных подсчетов дозу коагулянта следует определять по СНиП 2.04.02—84, которая в пересчете на безводные A12(S04)3; Fe2(S04)3; FeCl3 при обработке мутных вод принимается (в зависимости от содержания примесей) от 25 до 80 мг/л. При коагулировании воды с повышенной цветностью доза коагулянта находится по формуле ДК=4Ц0'5, где Ц — цветность воды, град.

Дозу ПАА, считая по безводному продукту, можно определить в зависимости от места его ввода. Так, при вводе перед сооружениями I ступени, согласно СНиПу, в зависимости от мутности и цветности исходной воды она варьируется в пределах 0,2... 1,5 мг/л, а при вводе перед фильтрами при двухступенчатой очистке — 0,05... 0,1 мг/л, при вводе перед фильтровальными сооружениями при одноступенчатой очистке — 0,2... ... 0,6 мг/л.

Доза АК, считая по диоксиду кремния, также зависит от места ее ввода: при вводе перед сооружениями I ступени при температуре исходной воды свыше 5...7°С она равна 2... 3 мг/л, а при температуре воды ниже 5 °С — 3...5 мг/л; при вводе перед фильтрами при двухступенчатой очистке — 0,2...0,5 мг/л и при вводе перед фильтровальными сооружениями при одноступенчатой очистке — 1...3 мг/л.

Электрохимическое коагулирование.

Электрохимическое коагулирование практикуется не только для выделения из воды твердых дисперсных примесей, но и эмульгированных веществ, а также растворенных газов ( кислород, сероводород, хлор), фенолов, радиоактивных и поверхностно-активных веществ Ч Кроме, того, как отмечено в гл. III, анодным растворением металлов в растворах поваренной соли, соляной и серной кислот получают хлориды и сульфаты алюминия и железа, используемые в качестве коагулирующих растворов. В связи с этим исследования по анодному растворению металлов, начатые еще в конце прошлого века, расширяются.

Электрохимическое коагулирование осуществляется путем пропускания воды в электролизере между алюминиевыми или железными пластинами, расположенными на расстоянии 10 - 20 мм друг от друга. Метод основан на анодном растворении пластин при прохождении через систему постоянного тока. Для этого пластины поочередно присоединяются к положительному и отрицательному полюсам источника тока большой силы и низкого напряжения.

.

Метод электрохимического коагулирования может быть применен для обработки сточных вод, содержащих эмульгированные частицы масел, жиров и нефтепродуктов, хроматы, фосфаты. Компактность установок, отсутствие реагентного и складского хозяйства, простота обслуживания являются несомненным достоинством метода электрохимической коагуляции. Однако значительные расходы электроэнергии и металла, являющиеся следствием образования окисной пленки на поверхности электродов, их механического загрязнения примесями сточных вод, а также нагревания обрабатываемой сточной воды, ограничивают область применения этого метода.

Метод электрохимического коагулирования имеет многие достоинства: компактность установок, отсутствие необходимости в реагентах, простота обслуживания и экономичность [ 203, с. Недостатком метода является повышенный расход металла, а также электроэнергии вследствие образования окисной пленки на поверхности электродов и их механического загрязнения примесями сточных вод. Кроме того, в процессе очистки происходит нагревание воды, что также увеличивает расход электроэнергии.

Метод электрохимического коагулирования может быть применен для обработки сточных вод, содержащих эмульгированные частицы масел, жиров и нефтепродуктов, хроматы, фосфаты. Компактность установок, отсутствие реагентного и складского хозяйства, простота обслуживания являются несомненным достоинством метода электрохимической коагуляции.

Металл анода под действием постоянного тока переходит в сточную воду, образуя труднорастворимые гидроксиды алюминия или железа, которые вызывают коагуляцию частиц сточной воды. Методэлектрохимического коагулирования может быть применен для обработки сточных вод, содержащих эмульгированные частицы масел, жиров и нефтепродукта, хроматы, фосфаты. Эффективность очистки достигает 99 %, расход электроэнергии 0 4 - 0 5 кВт - ч на 1 м3 обрабатываемой сточной воды. [9]

В процессе механической очистки из сточных вод в основном удаляются частицы размером более 10 мкм, а мелкодисперсные и коллоидные частицы остаются. Производственные сточные воды, прошедшие сооружения механической очистки, представляют собой агрегативно устойчивую систему. При введении в сточную воду коагулянтов или коагулянтов совместно с флокулянтами агрегатная устойчивость нарушается, образуются более крупные агрегаты частиц ( хлопья), которые удаляются из сточных вод механическими методами. Расход коагулянта зависит от его вида, а также состава и требуемой степени очистки сточных вод и составляет 0 1 - 5 кг / м3 сточных вод. В процессе коагуляции образуется значительный объем рыхлого хлопьевидного осадка ( до 10 - 20 % объема обрабатываемой сточной воды), что вынуждает применять коагуляционные методы очистки при небольших расходах сточных вод и при наличии дешевых коагулянтов. В состав входят реагентное хозяйство ( склады для хранения коагулянтов и флокулянтов, растворные и расходные баки, дозаторы), смесители, камеры хлопьеобразования, отстойники, сооружения по обработке осадка. В практике находит применение и метод электрохимического коагулирования с использованием электродов, изготовленных из железа или сплавов алюминия. Металл анода под действием постоянного тока ионизируется и переходит в сточную воду частицы загрязнений которой коагулируются образовавшимися труднорастворимыми гидроксидами алюминия или железа.

6.Назначение смесителей их устройства и конструкции.

Для надлежащего действия вводимых в воду реагентов необходимо быстрое и полное смешение их с водой. Его осуществляют при помощи специальных устройств — смесителей. В смеситель подается вся подлежащая обработке вода. Раствор реагента, прошедший дозатор, вводится в подающую трубу перед смесителем или в головную часть смесителя. Смешение раствора реагента с водой может быть осуществлено путем создания сильно завихренного движения воды в пределах смесителя или путем механического перемешивания воды в смесителе различными мешалками. В нашей практике преимущественно используются системы, основанные на первом принципе. Они обеспечивают достаточно полное смешение и более просты и надежны в эксплуатации. Наиболее распространенными типами таких смесителей являются дырчатый, перегородчатый и вертикальный. В соответствии с требованиями СНиП П-Г.3-62 продолжительность пребывания воды в смесителе не должна превышать 2 мин.

Дырчатый смеситель выполняют в виде железобетонного или металлического лотка с дырчатыми перегородками (V.7). Обычно устраивают три перегородки. Расстояние между перегородками принимают равным ширине смесителя.

Задаваясь уровнем воды за последней перегородкой (#о= =0,4—0,5 м) и прибавляя к нему найденные потери напора /г, можно получить уровень воды в каждом отделении смесителя. Уровень воды перед каждой перегородкой должен обеспечить затопление всех отверстий в ней. Истечение из верхнего ряда отверстий может происходить и йе под уровень.

Определенный таким образом уровень воды в первом отделении смесителя дает наивысшую отметку, на которую должна быть подана вода насосами первого подъема и которая обеспечивает самотечное движение воды по всему комплексу очистных сооружений.