Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
МУ ПЗ ГИДР.doc
Скачиваний:
1
Добавлен:
01.04.2025
Размер:
14.14 Mб
Скачать

Практическое занятие № 2. Гидростатика

2.1 Теоретические положения

Гидростатика - это раздел гидравлики, в котором изучаются законы равновесия жидкостей, а также твердых тел,погруженных в жидкость.

Наиболее общими уравнениями гидростатики являются дифференциальные уравнения Эйлера, устанавливающие связи между массовыми силами (силы тяжести, силы инерции) и поверхностными силами (силы, действующие на поверхность жидкости: силы давления, силы поверхностного натяжения, силы внутреннего трения).

В случае действия на жидкость только силы тяжести интегрирование уравнения Эйлера дает основное уравнение гидростатики

р = p0 + gh = p0 + γh, (2.1)

где р – гидростатическое давление, р0 – давление на поверхности жидкости,  - плотность жидкости, g – ускорение силы тяжести, h – глубина погружения данной точки, γ - удельный вес жидкости.

Если р0 = ра, где ра – атмосферное давление, то р = рабс – абсолютное давление. Если абсолютное давление в данной точке больше атмосферного (рабс> ра), то последний член уравнения (2.1) определяет манометрическое давление

рабс = ра + рм. (2.2)

Если абсолютное давление в данной точке жидкости меньше атмосферного, (рабс < ра), то последний член уравнения (2.1) определяет вакуум или разряжение

рв = gh = ра - рабс (2.3)

Вакуум представляет собой недостаток давления в данной точке до атмосферного.

Часто давление в жидкости численно выражают в виде соответствующей этому давлению пьезометрической высоты по формуле

H=p/(g). (2.4)

Из уравнения (2.1) следует, что внешнее давление на жидкость, заключенную в замкнутом сосуде, передается всем ее частицам без изменения. В этом суть закона Паскаля.

Полная сила F давления жидкости на плоскую стенку площадью S определяется по формуле

F =F0 + Fж = (р0 + ghc)·S, (2.5)

где F0 - сила от внешнего давления р0, Fж - сила от веса жидкости, hc – расстояние от центра тяжести рассматриваемой площади до поверхности жидкости.

Если жидкость давит на криволинейную стенку, то обычно находят составляющие силы давления по вертикали Fв и по горизонтали Fг, а затем определяют результирующую силу давления.

Горизонтальная составляющая силы давления определяется по формуле

Fг=ghc·Sв, (2.6)

где Sв – площадь вертикальной проекции смоченной жидкостью криволинейной стенки; hc – расстояние центра тяжести площади Sв от свободной поверхности жидкости.

Вертикальная составляющая силы давления жидкости на криволинейную стенку равна силе тяжести жидкости, заключенной в объеме V, называемом телом давления.

Fв=g·V. (2.7)

Полная сила давления

. (2.8)

Для нахождения тела давления можно воспользоваться следующим определением: тело давления – это объем, ограниченный рассматриваемой криволинейной стенкой, смоченной жидкостью, вертикальной цилиндрической поверхностью, проведенной через контур этой стенки, и горизонтальной плоскостью, проведенной по свободной поверхности.

2.2 Задачи с решениями

Задача 2.2.1. Определить абсолютное и избыточное давление на дно емкости, наполненной водой или бензином. Глубина емкости h = 40 м.

Решение. Пользуясь формулой, получаем

рабс = р0 + ·h = 10000 + 1000·4,0 = 14000 кг/м2 = 1,4 кг/см2.

Здесь p0 - атмосферное давление, действующее на свободную поверхность жидкости в резервуаре, равное 10000 кг/м2; объемный вес воды  = 1000 кг/м3. Избыточное же давление

р = ·h = 1000·4,0 = 4000 кг/м2 = 0,40 кг/см2.

Если бы данный резервуар был заполнен бензином с объемным весом  = 700 кг/м3, то абсолютное давление на дно резервуара получилось бы равным

pа б с = p0 + ·h = 1000 + 700·4,0 = 12800 кг/м2 = 1,28 кг/м2,

а избыточное гидростатическое давление

р = ·h = 700·4.0 =2800 кг/м2 = 0,28 кг/см2.

Задача 2.2.2. Определить избыточное и абсолютное гидростатическое давление в гидропневматическом аккумуляторе, если высота поднятия ртути в трубке ртутного U-образного манометра hp = 150 см (рисунок 2.1)

Рисунок 2.1 К задаче 2.2.2

Рисунок 2.2. К задаче 2.3

Решение. Находим

р =рт hр = 13600·1,5 = 20400 кг/м2 = 2,04 кг/см2 = 2,04 атм.

pабс = pа т+ p = 1,0 + 2,04 = 3,04 атм. = 3,04 кг/см2.

Задача 2.2.3. Определить разность давлений в резервуарах А и В, наполненных водой. Разность уровней ртути в дифференциальном ртутном манометре hp = 50 мм. Трубки манометра наполнены ртутью и водой без воздуха. Давление в резервуаре А больше, чем в резервуаре В.

Решение. Пользуясь зависимостью, находим разность давлений:

p =hp (PT - ) = 5·(0,0136 — 0,001) = 0,063 кг/см2 = 0,063 атм.

Задача 2.2.4. Определить вакуум в поршневом вакуум-насосе НВМ-300, если показание ртутного U-образного вакуумметра hвак=550 мм рт. ст.

Рисунок 2.3. К задаче 2.2.4

Решение. На основании равенства получаем

pвак = рт·hвак = 13,6·0,55 = 0,748 кг/см2.

Найдем теперь абсолютное давление в этом насосе, если атмосферное давление равно 730 мм рт. ст. Высота столбика ртути, соответствующая абсолютному давлению, будет равна

hабс = pатм - hвак = 730 – 550 = 180 мм.

Следовательно,

pабс = рт·hабс = 13600 0,18 =2450 кг/м2 = 0,245 кг/см2 = 0,245 атм.