Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Linear Algebra - M.V. Zaytsev.doc
Скачиваний:
0
Добавлен:
01.01.2020
Размер:
4.82 Mб
Скачать

6. Сопряжённый оператор.

Пусть — унитарное пространство, .

Определение. сопряжённый к , если .

Как и в вещёственном случае: и .

Теорема. Пусть и , — матрицы и в ортонормированном базисе. Тогда .

.

14.03.05

6. Эрмитовы операторы.

Опр. - эрмитов оператор в унитарном пространстве V, если (т.е. ).

Пусть - ортонормированный базис V. - эрмитов оператор его матрица в в этом базисе эрмитова (этот факт был на самом деле доказан на предыдущей лекции).

Теорема. 1) Все собственные числа эрмитова оператора – вещественные.

2) Для эрмитова оператора существует ортонормированный базис из собственных векторов.

1) , где x – собственный вектор. Но, с другой стороны, , откуда и следует .

2) Проведем индукцию по n. Для n=1 утверждение теоремы очевидно.

Шаг. Если , то доказывать нечего. Иначе - собственный вектор с собственным числом (вещественным по пред. пункту). Можно считать . Идея доказательства такая же, как и в вещественном случае. Обозначим через . Тогда W – подпространство, . (полное повторение вещественного случая, т.к. пространство решений одного уравнения). Покажем, что . Действительно, ( ) . Это и означает, что . По индукции в есть ортонормированный базис из собственных векторов . Добавив к этой системе первым вектором x получим требуемый базис. .

Следствие. Для любой эрмитовой матрицы A существует унитарная матрица такая, что , где все .

7. Унитарные операторы.

Пусть V – унитарное пространство, - линейный оператор на нем.

Опр. - унитарный оператор, если .

Предложение. - унитарный оператор имеет унитарную матрицу в ортонормированном базисе.

Т.к. .

Теорема. Для любого унитарного оператора в конечномерном векторном унитарном пространстве существует ортонормированный базис, в котором он имеет матрицу вида

В частности, все собственные числа равны по норме единице.

(1) Пусть x - cобственный вектор с собственным числом . Тогда .

(2) Рассмотрим собственный вектор - его собственное значение. . Тогда выполнено инвариантно. Так как , то . По индукции взяв искомый базис в и добавив и получим искомый базис всего пространства.

Аффинные точечные пространства

Основное поле - K.

Опр. Пара , где - векторное пространство называется аффинным пространством, если задано отображение такое, что выполнено (под «+» подразумевается ):

1)

2)

3)

В последнем свойстве иногда пишут или . Элементы A называют точками аффинного пространства. Само аффинное пространство называют ассоциированным с . Кроме того, говорят, что у аффинного пространства есть размерность:

Опр. Размерность А:

2. Изоморфизм

Пусть - два аффинных пространства, ассоциированные с одним и тем же векторным пространством .

Опр. Биективное отображение называется изоморфизмом, если . Это частный случай аффинно-линейного отображения , а именно:

Опр. Отображение (где ассоциировано с , а - с ) называется аффинно-линейным, если существует линейное отображение такое, что . Иногда Df называют линейной частью, или дифференциалом для f.

Утверждение. f – биективно Df биективно.

Теорема. Аффинные пространства одинаковой размерности изоморфны.

Пусть и - два аффинных пространства одинаковой размерности. Построим изоморфизм . Зафиксируем . Положим для . Проверим определение. Пусть - произвольная точка, - произвольный вектор. . Поэтому . Итак f – искомый изоморфизм.

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]