
- •Введение
- •1. Запуск математического пакета maple, структура окна
- •2. Описание основных команд–процедур пакета maple
- •2.1. Арифметические операции, типы данных в Maple
- •2.2. Структура команд Maple
- •Команда (параметр_1, параметр_2, …, параметр_n);
- •2.3. Преобразование математических выражений
- •2.3.1. Выделение частей арифметических выражений
- •2.3.2. Тождественные преобразования арифметических выражений
- •Collect(выражение, имя переменной относительно которой приводятся подобные);
- •3. Функции maple, решение уравнений и неравенств
- •3.1. Способы задания функций и замена переменных
- •Piecewise(cond_1,f1,cond_2,f2, …).
- •3.2. Операции оценивания
- •3.3. Решение уравнений и их систем
- •3.4. Решение неравенств
- •4. Графические и геометрические возможности пакета maple
- •4.1. Графические возможности пакета Maple
- •4.1.1. Двумерная графика
- •Polarplot ([переменная, выражение,параметры переменной],опции);
- •Pointplot(data_list,опции);
- •Sphereplot ((выражение), параметры_, параметры_, опции);
- •Sphereplot ([r_выражение, _выражение, _выражение], параметр_1, параметр_2, опции);
- •4.1.2. Трехмерная графика
- •4.2. Анимация
- •4.3. Геометрические пакеты Maple
- •4.3.1. Стереометрия
- •4.3.2. Планиметрия
- •5. Дифференциальное и интегральное исчисление функции одной переменной
- •5.1. Вычисление пределов в Maple для некоторых математических операций существует по две команды: прямого и отложенного исполнения. Имена команд состоят из одинаковых букв за исключением первой:
- •5.2. Дифференцирование
- •5.2.1. Вычисление производных
- •5.2.2. Дифференциальный оператор
- •5.3. Исследование функций
- •5.3.1. Непрерывность функции и точки разрыва
- •5.3.2. Экстремумы. Наибольшее и наименьшее значение функции
- •5.3.3. Исследование функции по общей схеме
- •{Arctan(0)}
- •6. Интегрирование
- •6.1. Аналитическое и численное интегрирование
- •6.2. Определенные интегралы
- •Is assumed to be: RealRange(Open(-1),3)
- •6.3. Основные методы интегрирования
- •7. Дифференциальные уравнения
- •7.1. Аналитическое решение дифференциальных уравнений
- •7.1.1. Общее решение дифференциальных уравнений
- •7.1.2. Фундаментальная (базисная) система решений
- •7.1.3. Решение задачи Коши или краевой задачи
- •7.1.4. Системы дифференциальных уравнений
- •7.1.5. Приближенное решение дифференциальных уравнений с помощью степенных рядов
- •7.2. Численное решение дифференциальных уравнений
- •7.2.1. Формат команд dsolve и odeplot для нахождения численного решения дифференциальных уравнений в графическом виде
- •Italic, 12]):
- •Italic, 12]):
- •7.2.2. Пакет графического представления решений дифференциальных уравнений dEtools
- •7.2.3. Построение фазовых портретов систем дифференциальных уравнений
- •8. Функции многих переменных, векторный анализ, ряды, интегральные преобразования
- •8.1. Дифференциальное исчисление функций многих переменных
- •8.1.1. Частные производные
- •8.1.2. Локальные и условные экстремумы функций многих переменных
- •Maximize(f,{x1,…,xn},range);
- •Minimize(f,{x1,…,xn}, range);
- •8.2. Интегральное исчисление функций многих переменных
- •8.3. Векторный анализ
- •8.4. Ряды и произведения
- •8.4.1. Вычисление суммы ряда и произведений
- •8.4.2. Разложение функции в степенной ряд и ряд Тейлора
- •8.5. Интегральные преобразования
- •8.5.1. Преобразование Фурье
- •8.5.2. Преобразование Лапласа
- •9. Линейная алгебра
- •9.1. Векторная алгебра
- •Warning, the protected names norm and trace have been redefined and unprotected
- •9.2. Действия с матрицами
- •9.2.1. Определение матрицы
- •9.2.2. Арифметические операции с матрицами
- •9.2.3. Определители, миноры и алгебраические дополнения, ранг и след матрицы
- •9.2.4. Обратная и транспонированная матрицы
- •Evalm(1/a);
- •Inverse(a).
- •9.2.5. Определение типа матрицы
- •1*Sqrt(3)/2,-1/2]]);
- •9.2.6. Функции от матриц
- •9.3. Спектральный анализ матрицы
- •9.4. Системы линейных уравнений, матричные уравнения
- •For имя переменной цикла in выражение 1 do выражение 2 od;
- •10.3. Процедуры-функции
- •10.4. Процедуры
- •Writeto (“имя файла”)
- •Appendto (“имя файла”)
- •Print(список Maple-выражений, перечисляемых через запятую);
- •Lprint(список Maple-выражений, перечисляемых через запятую);
- •Readdata(“имя файла”, тип переменной(integer/float – последний тип устанавливается по умолчанию),счетчик чисел);
- •Readlib(readdata):
- •12. Использование математического пакета maple для научных исследований
- •12.1. Исследование влияния изменяемых параметров плоской помольной камеры мельницы противоточного действия на скорость энергоносителя
- •12.1.1. Постановка задачи
- •12.1.2. Решение задачи
- •12.2. Определение коэффициента полезного заполнения материалом деформируемых бочкообразных камер устройств для тонкого и свертонкого помола материалов
- •12.2.1. Расчетная схема
- •12.2.2. Решение задачи
- •12.3. Исследование влияния основных конструктивных и технологических параметров на режимы работы трубной мельницы
- •Formula(1.8)
- •Formula(1.9)
- •Formula(2.1)
- •Formula(2.2)
- •Formula(2.3)
- •Formula(3.1)
- •Formula(3.2)
- •Formula(3.3)
- •13. Формат наиболее используемых команд аналитического пакета maple
- •Заключение
- •Библиографический список
- •Оглавление
2.3. Преобразование математических выражений
Maple обладает широкими возможностями для проведения аналитических преобразований математических формул. К ним относятся такие операции, как приведение подобных, разложение на множители, раскрытие скобок, приведение рациональной дроби к нормальному виду и др.
2.3.1. Выделение частей арифметических выражений
Пусть некоторому арифметическому выражению аа1=вв1, присвоено значение переменной, тогда командой rhs(выражение) можно осуществить выделение правой части арифметического выражения, а командой lhs(выражение) – произвести выделение левой части выражения.
Пример.
[>w:=a^2-b^2=(a-b)*(a+b):
[>rhs(w);
(a-b)(a+b)
[>lhs(w);
a2-b2
В случае рациональной дроби можно производить выделение ее числителя и знаменателя с помощью команд numer(выражение) и denom(выражение) соответственно.
Пример.
[>w:=(a^2-b^2)/(a^2+b^2):
[>numer(w);
a2-b2
[>denom(w);
a2+b2
2.3.2. Тождественные преобразования арифметических выражений
Разложение многочлена на множители осуществляется командой factor(выражение), а раскрытие скобок командой expand(выражение).
Пример.
[>w:=(x-1)*(x+2)*(x+1)*(x-3);
(x-1)*(x+2)*(x+1)*(x-3)
[>expand(w);
x4-x3-7x2+x+6
[>factor(%);
(x-1)*(x+2)*(x+1)*(x-3)
Команда expand(переменная) может иметь дополнительный параметр, позволяющий при раскрытии скобок оставлять определенное выражение без изменений. Например, пусть требуется каждое слагаемое арифметического выражения а + b + c умножить на выражение 1/(а - b), не производя раскрытия скобок. Такая операция может быть осуществлена с помощью следующего формата команды expand:
[>expand((a+b+c)/(a-b));
Упростить дробное выражение можно с помощью команды normal(выражение).
Пример.
[>w:=(a^2-b^2)/((a-b)*a);
[>normal(w);
Упрощение выражений осуществляется с помощью команды simplify(переменная или выражение).
Пример.
[>w:=(cos(x)-sin(x))*(cos(x)+sin(x)):
[>simplify(w);
2cos(x)2-1
В команде simplify(переменная) в качестве параметров можно указать как преобразовывать выражения. Например, при указании simplify(переменная,trig) будет производиться упрощение при использовании большого числа тригонометрических соотношений. Стандартные параметры имеют названия: power – для степенных преобразований; radical или sqrt – для преобразования корней; exp – преобразование экспонент; ln – преобразование логарифмов.
Для упрощения выражений, содержащих не только квадратные корни, но и корни других степеней, лучше использовать команду radnormal(выражение).
Пример.
[>sqrt(3+sqrt(3)+(10+6*sqrt(3))^(1/3))= radnormal(sqrt(3+sqrt(3)+(10+6*sqrt(3))^(1/3)));
Приведение подобных членов выражения осуществляется командой
Collect(выражение, имя переменной относительно которой приводятся подобные);
Пример.
[>f:=a*ln(x)-ln(x)*x-x;
f:=aln(x)-ln(x)x-x
[>collect(f,ln(x));
(a-x)ln(x)–x
Объединить показатели степенных функций или понизить степень тригонометрических функций можно при помощи команды combine(выражение,param), где param – параметр, указывающий, какой тип функции преобразовать, например: power, trig и др.
Пример.
[>combine(4*sin(x)^3,trig);
-sin(3x)+3sin(x)
С помощью команды convert(выражение, param), где выражение будет преобразовано в указанный тип param. В частности, можно преобразовать выражение, содержащее sinx и cosx, в выражение, содержащее только tgx. Если указать в качестве параметра tan, или, наоборот, tgx, ctgx, можно перевести в sinx и cosx, если в параметрах указать sin или cos.
Команда convert имеет более широкое назначение. Она осуществляет преобразование выражения одного типа в другой. Например: convert(list, vector) – преобразование некоторого списка list в вектор с теми же элементами; convert(переменная,string) – преобразование математического выражения в его текстовую запись. Для вызова подобной информации о назначении параметров команды convert следует обратиться к справочной системе, набрав convert[termin].