
- •Введение
- •1. Запуск математического пакета maple, структура окна
- •2. Описание основных команд–процедур пакета maple
- •2.1. Арифметические операции, типы данных в Maple
- •2.2. Структура команд Maple
- •Команда (параметр_1, параметр_2, …, параметр_n);
- •2.3. Преобразование математических выражений
- •2.3.1. Выделение частей арифметических выражений
- •2.3.2. Тождественные преобразования арифметических выражений
- •Collect(выражение, имя переменной относительно которой приводятся подобные);
- •3. Функции maple, решение уравнений и неравенств
- •3.1. Способы задания функций и замена переменных
- •Piecewise(cond_1,f1,cond_2,f2, …).
- •3.2. Операции оценивания
- •3.3. Решение уравнений и их систем
- •3.4. Решение неравенств
- •4. Графические и геометрические возможности пакета maple
- •4.1. Графические возможности пакета Maple
- •4.1.1. Двумерная графика
- •Polarplot ([переменная, выражение,параметры переменной],опции);
- •Pointplot(data_list,опции);
- •Sphereplot ((выражение), параметры_, параметры_, опции);
- •Sphereplot ([r_выражение, _выражение, _выражение], параметр_1, параметр_2, опции);
- •4.1.2. Трехмерная графика
- •4.2. Анимация
- •4.3. Геометрические пакеты Maple
- •4.3.1. Стереометрия
- •4.3.2. Планиметрия
- •5. Дифференциальное и интегральное исчисление функции одной переменной
- •5.1. Вычисление пределов в Maple для некоторых математических операций существует по две команды: прямого и отложенного исполнения. Имена команд состоят из одинаковых букв за исключением первой:
- •5.2. Дифференцирование
- •5.2.1. Вычисление производных
- •5.2.2. Дифференциальный оператор
- •5.3. Исследование функций
- •5.3.1. Непрерывность функции и точки разрыва
- •5.3.2. Экстремумы. Наибольшее и наименьшее значение функции
- •5.3.3. Исследование функции по общей схеме
- •{Arctan(0)}
- •6. Интегрирование
- •6.1. Аналитическое и численное интегрирование
- •6.2. Определенные интегралы
- •Is assumed to be: RealRange(Open(-1),3)
- •6.3. Основные методы интегрирования
- •7. Дифференциальные уравнения
- •7.1. Аналитическое решение дифференциальных уравнений
- •7.1.1. Общее решение дифференциальных уравнений
- •7.1.2. Фундаментальная (базисная) система решений
- •7.1.3. Решение задачи Коши или краевой задачи
- •7.1.4. Системы дифференциальных уравнений
- •7.1.5. Приближенное решение дифференциальных уравнений с помощью степенных рядов
- •7.2. Численное решение дифференциальных уравнений
- •7.2.1. Формат команд dsolve и odeplot для нахождения численного решения дифференциальных уравнений в графическом виде
- •Italic, 12]):
- •Italic, 12]):
- •7.2.2. Пакет графического представления решений дифференциальных уравнений dEtools
- •7.2.3. Построение фазовых портретов систем дифференциальных уравнений
- •8. Функции многих переменных, векторный анализ, ряды, интегральные преобразования
- •8.1. Дифференциальное исчисление функций многих переменных
- •8.1.1. Частные производные
- •8.1.2. Локальные и условные экстремумы функций многих переменных
- •Maximize(f,{x1,…,xn},range);
- •Minimize(f,{x1,…,xn}, range);
- •8.2. Интегральное исчисление функций многих переменных
- •8.3. Векторный анализ
- •8.4. Ряды и произведения
- •8.4.1. Вычисление суммы ряда и произведений
- •8.4.2. Разложение функции в степенной ряд и ряд Тейлора
- •8.5. Интегральные преобразования
- •8.5.1. Преобразование Фурье
- •8.5.2. Преобразование Лапласа
- •9. Линейная алгебра
- •9.1. Векторная алгебра
- •Warning, the protected names norm and trace have been redefined and unprotected
- •9.2. Действия с матрицами
- •9.2.1. Определение матрицы
- •9.2.2. Арифметические операции с матрицами
- •9.2.3. Определители, миноры и алгебраические дополнения, ранг и след матрицы
- •9.2.4. Обратная и транспонированная матрицы
- •Evalm(1/a);
- •Inverse(a).
- •9.2.5. Определение типа матрицы
- •1*Sqrt(3)/2,-1/2]]);
- •9.2.6. Функции от матриц
- •9.3. Спектральный анализ матрицы
- •9.4. Системы линейных уравнений, матричные уравнения
- •For имя переменной цикла in выражение 1 do выражение 2 od;
- •10.3. Процедуры-функции
- •10.4. Процедуры
- •Writeto (“имя файла”)
- •Appendto (“имя файла”)
- •Print(список Maple-выражений, перечисляемых через запятую);
- •Lprint(список Maple-выражений, перечисляемых через запятую);
- •Readdata(“имя файла”, тип переменной(integer/float – последний тип устанавливается по умолчанию),счетчик чисел);
- •Readlib(readdata):
- •12. Использование математического пакета maple для научных исследований
- •12.1. Исследование влияния изменяемых параметров плоской помольной камеры мельницы противоточного действия на скорость энергоносителя
- •12.1.1. Постановка задачи
- •12.1.2. Решение задачи
- •12.2. Определение коэффициента полезного заполнения материалом деформируемых бочкообразных камер устройств для тонкого и свертонкого помола материалов
- •12.2.1. Расчетная схема
- •12.2.2. Решение задачи
- •12.3. Исследование влияния основных конструктивных и технологических параметров на режимы работы трубной мельницы
- •Formula(1.8)
- •Formula(1.9)
- •Formula(2.1)
- •Formula(2.2)
- •Formula(2.3)
- •Formula(3.1)
- •Formula(3.2)
- •Formula(3.3)
- •13. Формат наиболее используемых команд аналитического пакета maple
- •Заключение
- •Библиографический список
- •Оглавление
Warning, the protected names norm and trace have been redefined and unprotected
[> a:=([2,1,3,2]); b:=([1,2,-2,1]);
a:=[2,1,3,2]
b:=[1,2,-2,1]
[> dotprod(a,b);
0
[> phi=angle(a,b);
Пример.
Найти
векторное произведение
,
а затем скалярное произведение
,
где
,
.
[> restart; with(linalg):
[> a:=([2,-2,1]); b:=([2,3,6]);
a:=[2,2,1]
b:=[2,3,6]
[> c:=crossprod(a,b);
c:=[15,10,10]
[> dotprod(a,c);
0
Пример.
Из
системы векторов:
,
,
,
,
выделить базис и ортогонализовать его
по процедуре Грамма–Шмидта:
[> restart; with(linalg):
[> a1:=vector([1,2,2,-1]):
a2:=vector([1,1,-5,3]): a3:=vector([3,2,8,7]): a4:=vector([0,1,7,-4]): a5:=vector([2,1,12,-10]):
[> g:=basis([a1,a2,a3,a4,a5]);
g:= [a1, a2, a3, a5]
[> GramSchmidt(g);
[[1,2,2,1],
[2,3,3,2],
,
9.2. Действия с матрицами
9.2.1. Определение матрицы
Для задания матрицы в Maple можно использовать команду matrix(n,m,[[a11,a12,…,a1n], [a21,a22,…,a2m],…, [an1,an2,…,anm]]), где n число строк; m – число столбцов в матрице. Число строк и число столбцов в приведенной команде задавать необязательно, а достаточно перечислить элементы матрицы построчно в квадратных скобках через запятую.
Пример.
[> A:=matrix([[1,2,3],[-3,-2,-1]]);
В Maple матрицы специального вида можно генерировать с помощью дополнительных команд. В частности, диагональную матрицу можно получить командой diag.
Пример:
[> J:=diag(1,2,3);
Генерировать матрицу можно также с помощью функции f(i, j) от переменных индексов i, j – матрицы. Формат команды имеет вид: matrix(n, m, f), где n – число строк, m – число столбцов.
Пример.
[> f:=(i, j)->x^i*y^j;
[> A:= matrix(2,3,f);
Число строк в матрице А можно определить с помощью команды rowdim(A), а число столбцов – с помощью команды coldim(A).
9.2.2. Арифметические операции с матрицами
Сложение двух матриц одинаковой размерности осуществляется теми же командами, что и сложение векторов: evalm(A+B) или matadd(A,B). Произведение двух матриц может быть найдено с помощью команд:
1) evalm(A&*B);
2) multiply(A,B).
В качестве второго аргумента в командах, вычисляющих произведение, можно задавать вектор.
Пример.
[> A:=matrix([[1,0],[0,-1]]);
[> B:=matrix([[-5,1], [7,4]]);
[> v:=vector([2,4]);
[> multiply(A,v);
[> multiply(A,B);
[> matadd(A,B);
Команда evalf позволяет также прибавлять к матрице число и умножать матрицу на число.
Пример.
[> restart;
[> with(linalg):
Warning, the protected names norm and trace have been redefined and unprotected
[> C:=matrix([[1,1],[2,3]]);
[> evalm(2+3*C);
9.2.3. Определители, миноры и алгебраические дополнения, ранг и след матрицы
Определитель матрицы А вычисляется командой det(A). Команда minor(A,i,j) возвращает матрицу, полученную из исходной матрицы А вычеркиванием i-й строки и j-го столбца. Минор Mij элемента aij матрицы А можно вычислить командой det(minor(A,i,j)). Ранг матрицы А вычисляется командой rank(A). След матрицы А, равный сумме ее диагональных элементов, вычисляется командой trace(A).
Пример.
[> A:=matrix([[4,0,5],[0,1,-6],[3,0,4]]);
[> det(A);
1
[> minor(А,3,2);
[> det(%);
-24
[> trace(A);
9