
- •Введение
- •1. Запуск математического пакета maple, структура окна
- •2. Описание основных команд–процедур пакета maple
- •2.1. Арифметические операции, типы данных в Maple
- •2.2. Структура команд Maple
- •Команда (параметр_1, параметр_2, …, параметр_n);
- •2.3. Преобразование математических выражений
- •2.3.1. Выделение частей арифметических выражений
- •2.3.2. Тождественные преобразования арифметических выражений
- •Collect(выражение, имя переменной относительно которой приводятся подобные);
- •3. Функции maple, решение уравнений и неравенств
- •3.1. Способы задания функций и замена переменных
- •Piecewise(cond_1,f1,cond_2,f2, …).
- •3.2. Операции оценивания
- •3.3. Решение уравнений и их систем
- •3.4. Решение неравенств
- •4. Графические и геометрические возможности пакета maple
- •4.1. Графические возможности пакета Maple
- •4.1.1. Двумерная графика
- •Polarplot ([переменная, выражение,параметры переменной],опции);
- •Pointplot(data_list,опции);
- •Sphereplot ((выражение), параметры_, параметры_, опции);
- •Sphereplot ([r_выражение, _выражение, _выражение], параметр_1, параметр_2, опции);
- •4.1.2. Трехмерная графика
- •4.2. Анимация
- •4.3. Геометрические пакеты Maple
- •4.3.1. Стереометрия
- •4.3.2. Планиметрия
- •5. Дифференциальное и интегральное исчисление функции одной переменной
- •5.1. Вычисление пределов в Maple для некоторых математических операций существует по две команды: прямого и отложенного исполнения. Имена команд состоят из одинаковых букв за исключением первой:
- •5.2. Дифференцирование
- •5.2.1. Вычисление производных
- •5.2.2. Дифференциальный оператор
- •5.3. Исследование функций
- •5.3.1. Непрерывность функции и точки разрыва
- •5.3.2. Экстремумы. Наибольшее и наименьшее значение функции
- •5.3.3. Исследование функции по общей схеме
- •{Arctan(0)}
- •6. Интегрирование
- •6.1. Аналитическое и численное интегрирование
- •6.2. Определенные интегралы
- •Is assumed to be: RealRange(Open(-1),3)
- •6.3. Основные методы интегрирования
- •7. Дифференциальные уравнения
- •7.1. Аналитическое решение дифференциальных уравнений
- •7.1.1. Общее решение дифференциальных уравнений
- •7.1.2. Фундаментальная (базисная) система решений
- •7.1.3. Решение задачи Коши или краевой задачи
- •7.1.4. Системы дифференциальных уравнений
- •7.1.5. Приближенное решение дифференциальных уравнений с помощью степенных рядов
- •7.2. Численное решение дифференциальных уравнений
- •7.2.1. Формат команд dsolve и odeplot для нахождения численного решения дифференциальных уравнений в графическом виде
- •Italic, 12]):
- •Italic, 12]):
- •7.2.2. Пакет графического представления решений дифференциальных уравнений dEtools
- •7.2.3. Построение фазовых портретов систем дифференциальных уравнений
- •8. Функции многих переменных, векторный анализ, ряды, интегральные преобразования
- •8.1. Дифференциальное исчисление функций многих переменных
- •8.1.1. Частные производные
- •8.1.2. Локальные и условные экстремумы функций многих переменных
- •Maximize(f,{x1,…,xn},range);
- •Minimize(f,{x1,…,xn}, range);
- •8.2. Интегральное исчисление функций многих переменных
- •8.3. Векторный анализ
- •8.4. Ряды и произведения
- •8.4.1. Вычисление суммы ряда и произведений
- •8.4.2. Разложение функции в степенной ряд и ряд Тейлора
- •8.5. Интегральные преобразования
- •8.5.1. Преобразование Фурье
- •8.5.2. Преобразование Лапласа
- •9. Линейная алгебра
- •9.1. Векторная алгебра
- •Warning, the protected names norm and trace have been redefined and unprotected
- •9.2. Действия с матрицами
- •9.2.1. Определение матрицы
- •9.2.2. Арифметические операции с матрицами
- •9.2.3. Определители, миноры и алгебраические дополнения, ранг и след матрицы
- •9.2.4. Обратная и транспонированная матрицы
- •Evalm(1/a);
- •Inverse(a).
- •9.2.5. Определение типа матрицы
- •1*Sqrt(3)/2,-1/2]]);
- •9.2.6. Функции от матриц
- •9.3. Спектральный анализ матрицы
- •9.4. Системы линейных уравнений, матричные уравнения
- •For имя переменной цикла in выражение 1 do выражение 2 od;
- •10.3. Процедуры-функции
- •10.4. Процедуры
- •Writeto (“имя файла”)
- •Appendto (“имя файла”)
- •Print(список Maple-выражений, перечисляемых через запятую);
- •Lprint(список Maple-выражений, перечисляемых через запятую);
- •Readdata(“имя файла”, тип переменной(integer/float – последний тип устанавливается по умолчанию),счетчик чисел);
- •Readlib(readdata):
- •12. Использование математического пакета maple для научных исследований
- •12.1. Исследование влияния изменяемых параметров плоской помольной камеры мельницы противоточного действия на скорость энергоносителя
- •12.1.1. Постановка задачи
- •12.1.2. Решение задачи
- •12.2. Определение коэффициента полезного заполнения материалом деформируемых бочкообразных камер устройств для тонкого и свертонкого помола материалов
- •12.2.1. Расчетная схема
- •12.2.2. Решение задачи
- •12.3. Исследование влияния основных конструктивных и технологических параметров на режимы работы трубной мельницы
- •Formula(1.8)
- •Formula(1.9)
- •Formula(2.1)
- •Formula(2.2)
- •Formula(2.3)
- •Formula(3.1)
- •Formula(3.2)
- •Formula(3.3)
- •13. Формат наиболее используемых команд аналитического пакета maple
- •Заключение
- •Библиографический список
- •Оглавление
Is assumed to be: RealRange(Open(-1),3)
Согласно отмеченному выше вычисление интеграла с параметром , следует производить в таком порядке:
[> assume(a>0);
[>Int(exp(-a*x),x=0..+infinity)=int(exp(-a*x), x=0..+infinity);
Пример.
Найти
определенный интеграл
,
при условии a
>
0, b
>
0.
[> assume (a>0); assume (b>0);
[>Int(sin(x)*cos(x)/(a^2*cos(x)^2+b^2*sin(x)^2)^2,x=0..Pi/2)=int(sin(x)*cos(x)/(a^2*cos(x)^2+b^2*sin(x)^2)^2,x=0..Pi/2);
[> q:=rhs(%);
[> simplify(%);
6.3. Основные методы интегрирования
В Maple имеется пакет student, который можно загрузить командой with(student). Данный пакет содержит набор подпрограмм, предназначенных для пошагового выполнения расчетов, приводящих к конечному результату. К таким командам относятся интегрирование по частям intparts и замена переменной changevar.
Как известно, формула интегрирования по частям имеет вид:
.
Если обозначить функцию, стоящую под интегралом f=u(x)v’(x), то параметры команды интегрирования по частям будут иметь вид: intparts(Int(f, x), u), где u(x) - функция, производную от которой предстоит вычислить по формуле интегрирования по частям.
Если в интеграле требуется сделать замену переменных x=g(t) или t=h(x), то параметры команды замены переменных будут иметь вид: changevar(h(x)=t,Int(f,x),t), где t новая переменная.
Приведенные выше команды intparts и changevar не вычисляют окончательно интеграл, а лишь производят промежуточную подстановку. Для получения окончательного ответа, следует, после выполнения всех промежуточных вычислений ввести команду value(%); где % – обозначает выполнение команды от результата предыдущей строки.
Пример.
[> restart;
[> with(student):
[> intparts(Int(x^2*sin(x),x),x^2);
[> intparts(Int(-2*x*cos(x),x),x);
[> value(%);
Пример.
[> restart; with(student):
[>changevar(tan(x/2)=t,Int(1/(3*sin(x)+ 4*cos(x)), x),t);
[> expand(%);
[> simplify(%);
[> q:=value(%);
[> subs((t=tan(x/2)),q);
7. Дифференциальные уравнения
7.1. Аналитическое решение дифференциальных уравнений
7.1.1. Общее решение дифференциальных уравнений
Для нахождения аналитических решений дифференциальных уравнений в Maple применяется команда dsolve(eq,var,options), где eq – дифференциальное уравнение; var – неизвестная функция; options – параметры. С помощью параметров можно задавать метод решения задачи, по умолчанию ищется аналитическое решение: type=exact. При вводе дифференциального уравнения для обозначения производной нужно использовать команду прямого действия diff. Дифференциальное уравнение y''+y=x в среде Maple записывается в виде:
diff(y(x),x$2)+y(x)=x;
Общее решение дифференциального уравнения, которое, как известно, зависит от произвольных постоянных, число которых равно порядку дифференциального уравнения. В Maple такие постоянные, как правило, обозначаются как _С1, _С2 и т.д.
Общее решение неоднородного линейного дифференциального уравнения всегда выводится так, чтобы была четко видна структура этого решения. Как известно, общее решение неоднородного линейного дифференциального уравнения равно сумме общего решения соответствующего однородного дифференциального уравнения и частного решения этого же неоднородного дифференциального уравнения. Поэтому в строке вывода решение неоднородного линейного дифференциального уравнения всегда состоит из слагаемых, которые содержат произвольные постоянные (это общее решение соответствующего однородного дифференциального уравнения), и слагаемые без произвольных постоянных (это частное решение этого же неоднородного дифференциального уравнения).
Команда dsolve выводит решение дифференциального уравнения в невычисляемом формате. Для того чтобы с решением можно было бы работать далее (например, построить график решения) следует отделить правую часть полученного решения командой rhs(%).
Пример.
Найти общее решение дифференциального уравнения y'+y/x=ex.
[> restart;
[> de:=diff(y(x),x)+y(x)/x=exp(x);
[> dsolve(de,y(x) );
При записи решения дифференциального уравнения в Maple в строке вывода произвольная постоянная обозначена как _С1.
Пример.
Найти общее решение дифференциального уравнения второго порядка y''2y'+y=sinx+ex.
[> restart;
[> eq:=diff(y(x),x$2)-2*diff(y(x),x)+y(x)
=sin(x)+exp(-x);
eq:=
[> dsolve(eq,y(x));
Так как исходное уравнение было второго порядка, то полученное решение содержит две произвольные константы, которые в Maple обычно обознаются как _С1 и _С2. Первые два слагаемых представляют собой общее решение соответствующего однородного дифференциального уравнения, а вторые два – частное решение неоднородного дифференциального уравнения.
Пример.
Найти общее решение дифференциального уравнения второго порядка y''+k2y=sin(qx) в двух случаях: qk и q=k (резонанс).
[> restart;de:=diff(y(x),x$2)+k^2*y(x)=sin(q*x);
de:=
[> dsolve(de,y(x));
Теперь найдем решение в случае резонанса. Для этого перед вызовом команды dsolve следует приравнять q=k.
[> q:=k: dsolve(de,y(x));
Замечание: в обоих случаях частное решение неоднородного уравнения и общее решение, содержащее произвольные постоянные, выводятся отдельными слагаемыми.