
- •Теория и практика применения технических средств таможенного контроля
- •Оглавление
- •Глава 5. Металлоискатели………………………………………….131
- •Глава 6. Оперативная диагностика драгоценных металлов
- •Глава 7. Досмотровая рентгеновская техника и средства контроля делящихся и радиоактивных материалов………………………214
- •Глава 8. Обнаружение и диагностирование наркотических
- •Глава 9. Разработка и эксплуатация технических средств таможенного контроля……………………………………………………….362
- •Глава 1
- •Таможенный контроль и правовые основы применения технических средств таможенного контроля
- •Методические основы применения технических средств таможенного контроля
- •Контрольные вопросы
- •1.4. Литература
- •2.1. Система оперативных задач таможенного контроля
- •2.2. Классификация технических средств
- •2.3 Контрольные вопросы
- •2.4. Литература
- •3.1. Основные эксплуатационные характеристики технических средств
- •3.2. Погрешности измерений
- •3.3. Надежность и достоверность контроля
- •3.4. Система метрологического контроля и надзора
- •3.5. Контрольные вопросы
- •3.6. Литература
- •Глава 4
- •4.1. Проверка подлинности документов
- •4.2. Проверка признаков подлинности валюты
- •Микротекст.
- •Фрагменты изображения, светящиеся под воздействием ик излучения.
- •Фрагменты изображения, светящиеся под воздействием уф-излучения.
- •В ультрафиолетовых лучах имеют свечение:
- •4.3. Элементы защиты акцизных марок
- •4.4. Контроль атрибутов таможенного обеспечения
- •4.5. Технические средства проверки
- •4.6 Контрольные вопросы
- •4.7 Литература
- •Глава 5 металлоискатели
- •5.1. Классификация и основные параметры
- •5.2. Стационарные металлоискатели
- •5.3 Металлоискатели по принципу «прием-передача»
- •5.4. Металлоискатели на биениях
- •5.5. Однокатушечные металлоискатели индукционного типа
- •5.6. Импульсные металлоискатели
- •5.7 Магнитометры
- •5.8. Примеры ручных металлоискателей
- •5.9. Контрольные вопросы
- •5.10. Литература
- •Глава 6
- •6.1. Драгоценные материалы. Клеймение
- •6.2. Методы диагностирования драгоценных металлов и сплавов
- •6.3. Методы диагностирования драгоценных камней
- •6.4. Технические средства оперативного диагностирования
- •6.5 Контрольные вопросы
- •6.6. Литература
- •Глава 7
- •7.1. Свойства рентгеновских лучей и устройство рентгеновской трубки
- •7.2. Классификация досмотровой рентгеновской техники
- •7.3. Рентгеновские аппараты сканирующего типа
- •7.4. Досмотровые флюороскопы
- •7.5. Инспекционно-досмотровые комплексы
- •7.6. Новые применения досмотровых рентгеновских установок
- •7.7. Методы и средство контроля за делящимися и радиоактивными материалами
- •7.8. Основы обеспечения радиационной безопасности
- •7.9. Контрольные вопросы
- •7.10. Литература
- •Глава 8
- •8.1. Правовые основы борьбы таможенных органов с незаконным оборотом наркотических и взрывчатых веществ
- •8.2. Виды наркотических веществ
- •8.3. Виды взрывчатых веществ
- •8.4. Физико-химические основы методов обнаружения и диагностики
- •8.5. Средства обнаружения и диагностики наркотических веществ
- •8.6. Средства обнаружения и диагностики взрывчатых веществ
- •8.7. Контрольные вопросы
- •8.8. Литература
- •Глава 9
- •9.1. Система управления разработкой, внедрением и эксплуатацией
- •9.2. Разработка новых тстк
- •9.3. Организация эксплуатации
- •9.4. Организация технического обслуживания
- •9.5. Контрольные вопросы
- •9.6. Литература
- •Письма центрального банка россии о поддельных банкнотах 100 и 500 рублей
- •690034, Владивосток, ул. Стрелковая, 16в
5.7 Магнитометры
Для магниточувствительных металлоискателей (далее магнитометров) чувствительность принято обозначать величиной магнитной индукции поля, которую способен зарегистрировать прибор. Обычно чувствительность измеряют в нанотеслах (нТл) 1нТл=(10-9)Т.
Поле Земли составляет величину примерно 35000 нТл. Это усредненная величина, в различных точках земного шара она меняется в диапазоне 35000+60000 нТл. Таким образом, задача поиска ферромагнитных предметов состоит в том, чтобы на фоне природного поля Земли обнаружить изменение поля, обусловленное искажениями от ферромагнитных предметов.
Кроме чувствительности, для определения качества магнитометров используют такой параметр, как разрешающая способность, которая также измеряется в нанотеслах и определяет минимальную разницу индукции, регистрируемую прибором.
Существует несколько физических принципов и основанных на них типов магнитометров, позволяющих фиксировать минимальные изменения магнитного поля Земли или искажения, вносимые ферромагнитными объектами. Современные магнитометры обладают чувствительностью от 0,01 нТл до 1,0 нТл, в зависимости от принципа действия и класса решаемых задач.
Широкое распространение получили приборы, принцип работы которых основан на использовании нелинейных свойств ферромагнитных материалов. Чувствительные элементы, реализующие этот принцип, получили название феррозонды. Они содержат катушку возбуждения с нелинейным ферромагнитным сердечником, а также приемную катушку, находящуюся около катушки возбуждения.
Если
через катушку возбуждения пропустить
переменный ток, который
создаст переменное поле с амплитудой
напряженности Нт и приложить
к феррозонду соосное постоянное поле
напряженностью Но, то на выходе приемной
катушки появится напряжение с удвоенной
частотой,
пропорциональное напряженности Но
постоянного магнитного поля. Появление
напряжения удвоенной частоты обусловлено
нелинейной характеристикой
сердечника феррозонда. Это напряжение
и является сигналом,
по которому судят о внешнем магнитном
поле.
Типичная конструкция магнитометра включает в себя штангу, с размещенными на ней батарейным блоком питания и электронным блоком, а также феррозондовый преобразователь, размещенный на оси, перпендикулярной штанге (рис. 5.9).Магнитное поле Земли в конкретном месте имеет некоторую конкретную величину напряженности Но. Это поле вместе с полем, создаваемым катушкой возбуждения, воздействует на приемную катушку феррозонда, на выходе которой создается некоторое напряжение.
Перед применением прибор предварительно калибруют, чтобы компенсировать воздействие поля Земли в отсутствие ферро-магнитных объектов контроля (полная аналогия с калибровкой индукционных металлоискателей). Если затем около прибора поместить предмет из ферромагнитного материала, он исказит форму силовых линий и величину напряженности магнитного поля Земли (рис. 5.10). В результате изменится выходное напряжение приемной катушки. Феррозонд является векторным прибором, т.е. его выходной сигнал зависит не только от величины внешнего магнитного поля, но и от направления его силовых линий относительно оси феррозонда. По этой причине феррозонд располагают на вращающемся шарнире, чтооы под соосгвен-ным весом он всегда занимал вертикальное положение относительно земной поверхности и силовых линий нормального магнитного поля Земли. В связи с тем, что магнитометр является векторным прибором, анализ напряжения приемной катушки позволяет получить информацию об ориентации и размерах ферромагнитного объекта.
С
уществуют
магнитометры, работающие на других
физических
принципах. Так, известны
квантовые приборы, основанные на эффекте
ядерного магнитного резонанса и эффекте
Зеемана с оптической накачкой. Они
обладают большей чувствительностью.