Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
mszki.docx
Скачиваний:
1
Добавлен:
01.04.2025
Размер:
953.49 Кб
Скачать

Требования к цифровой подписи

Аутентификация защищает двух участников, которые обмениваются сообщениями, от воздействия некоторой третьей стороны. Однако простая аутентификация не защищает участников друг от друга, тогда как и между ними тоже могут возникать определенные формы споров.

В ситуации, когда обе стороны не доверяют друг другу, необходимо нечто большее, чем аутентификация на основе общего секрета. Возможным решением подобной проблемы является использование цифровой подписи. Цифровая подпись должна обладать следующими свойствами:

1) Должна быть возможность проверить автора, дату и время создания подписи.

2) Должна быть возможность аутентифицировать содержимое во время создания подписи.

3) Подпись должна быть проверяема третьей стороной для разрешения споров.

Таким образом, функция цифровой подписи включает функцию аутентификации.

На основании этих свойств можно сформулировать следующие требования к цифровой подписи:

1) Подпись должна быть битовым образцом, который зависит от подписываемого сообщения.

2) Подпись должна использовать некоторую уникальную информацию отправителя для предотвращения подделки или отказа.

3) Создавать цифровую подпись должно быть относительно легко.

4) Должно быть вычислительно невозможно подделать цифровую подпись как созданием нового сообщения для существующей цифровой подписи, так и созданием ложной цифровой подписи для некоторого сообщения.

5) Цифровая подпись должна быть достаточно компактной и не занимать много памяти.

Сильная хэш-функция, зашифрованная закрытым ключом отправителя, удовлетворяет перечисленным требованиям.

15. Сравнительная оценка американского и российского стандартов криптографической защиты данных.

Все современные криптосистемы построены по принципу Кирхгоффа, то есть секретность зашифрованных сообщений определяется секретностью ключа. Это значит, что даже если сам алгоритм шифрования известен криптоаналитику, тот, тем не менее, не в состоянии расшифровать сообщение, если не располагает соответствующим ключом. Шифр считается хорошо спроектированным, если нет способа вскрыть его более эффективным способом, чем полным перебором по всему ключевому пространству, т.е. по всем возможным значениям ключа. ГОСТ, вероятно, соответствует этому принципу – за годы интенсивных исследований не было предложено ни одного результативного способа его криптоанализа. В плане стойкости он на много порядков превосходит прежний американский стандарт шифрования, DES.

В ГОСТе используется 256-битовый ключ и объем ключевого пространства составляет 2256. Ни на одном из существующих в настоящее время или предполагаемых к реализации в недалеком будущем электронном устройстве нельзя подобрать ключ за время, меньшее многих сотен лет. Эта величина стала фактическим стандартом размера ключа для симметричных криптоалгоритмов в наши дни, – так, новый стандарт шифрования США также его поддерживает. Прежний же американский стандарт, DES с его реальным размером ключа в 56 бит и объемом ключевого пространства всего 256 уже не является достаточно стойким в свете возможностей современных вычислительных средств. Это было продемонстрировано в конце 90-х годов несколькими успешными попытками взлома DES переборным путем. Кроме того, DES оказался подвержен специальным способам криптоанализа, таким как дифференциальный и линейный. В этой связи DES может представлять скорее исследовательский или научный, чем практический интерес. В 1998 году его криптографическая слабость была признана официально, – национальный институт стандартов США рекомендовал использовать троекратное шифрование по DES. А в конце 2001 года был официально утвержден новый стандарт шифрования США, AES, построенный на иных принципах и свободный от недостатков своего предшественника [3].

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]