- •Оглавление
- •Раздел 1. 14
- •Глава 1. Электроэнергетические системы 15
- •Глава 2. Управление режимами ээс 34
- •Глава 4. Особенности режимов ээс на электроэнергетическом рынке 101
- •Глава 5. Балансы мощности и энергии 122
- •Раздел 2. 160
- •Глава 6. Математическое моделирование задач оптимизации режимов 161
- •Глава 9. Оптимальное использование водных ресурсов гидроэлектростанций 253
- •Раздел 3. 285
- •Глава 10. Адресность расчетов режимов в схемах ээс с хозяйственными объектами 286
- •Глава 11. Расчет режимов ээс с использованием схемы ээс с электрическим эквивалентом ее энергетических и стоимостных параметров 331
- •Глава 12. Модели и методы прогнозирования электропотребления и графиков нагрузки ээс 356
- •Введение
- •1.2. Инновационные направления развития техники и технологии производства в электроэнергетических системах
- •1.3. Режимные задачи их состав и содержание
- •1.4. Учет требований потребителей к энергоснабжению при расчете режимов ээс
- •1.5. Виды режимов
- •1.6. Заключение по главе 1
- •1.7. Вопросы для самопроверки
- •Глава 2. Управление режимами ээс
- •2.1. Принципы управления режимами
- •2.2. Средства и системы управления энергетическими объектами
- •2.3. Управление режимами на электроэнергетическом рынке
- •2.4. Оперативно-диспетчерское управление режимами
- •2.5. Автоматическое управление режимами
- •Функциональная автоматика турбин и вспомогательного оборудования
- •2.6.Заключение по главе 2
- •2.7. Вопросы для самопроверки
- •Глава з. Компьютеризация управления режимами. Автоматизированные системы управления асу
- •3.1. Виды компьютерных систем в управлении режимами ээс
- •3.2. Краткие сведения о компьютерных системах управления в энергетике
- •3.3 Техническое обеспечение асу
- •3.4. Информационное обеспечение асу
- •3.5. Математическое обеспечение асу
- •3.6. Пример состава задачи, решаемых в асу тп гэс
- •3.7. Задачи асу тп подстанций
- •3.9. Эффективность асу
- •3.10. Заключение по главе 3
- •3.11. Вопросы для самопроверки
- •Глава 4. Особенности режимов ээс на электроэнергетическом рынке
- •4.1. Некоторые особенности коммерческого управления режимами ээс
- •4.2. Среда деятельности системы
- •4.3. Электроэнергетический рынок
- •4.4. Учет особенностей электроэнергетического рынка при оптимизации режимов ээс
- •4.4. Рыночная и контрактная форма взаимоотношений на электроэнергетическом рынке
- •4.5.Заключение по главе 4
- •4.6 Вопросы для самопроверки
- •Глава 5. Балансы мощности и энергии
- •5.1. Структура балансов мощности и энергии системы
- •5.2.Участие станций в энергетических балансах системы
- •5.3. Методические основы составления балансов мощности
- •5.4. Особенности составления баланса электроэнергии
- •5. 5. Надежность энергетических балансов и обеспеченность работы ээс
- •5.6 Гидростанции с различной степенью регулирования стока в энергетических балансах
- •5.7. Баланс реактивной мощности
- •5.8. Резервы мощности
- •5. 8. Задача расчета суточного баланса мощности системы
- •5.10. Задача выбора и размещения резервных мощностей энергосистемы
- •5.11. Заключение по главе 5
- •5.12. Вопросы для самопроверки
- •Заключение по разделу 1
- •Раздел 2. Основные принципы, модели и методы решения задачи управления режимами энергосистем Глава 6. Математическое моделирование задач оптимизации режимов
- •6. 1. Задачи оптимизации режимов и особенности их математического моделирования
- •6.2. Общие положения алгоритмизации задач расчета режимов электроэнергетической системы
- •6.3. Учет параметрических свойств мощности и выработки электроэнергии в характеристиках электрической модели
- •6.4. Критерии оптимизации в энергетических режимных задачах
- •6. 5. Критерий оптимизации режимов электрической сети
- •6.6. Линейная и нелинейная постановка задачи оптимизации режимов энергосистемы
- •6.8. Заключение по главе 8
- •6.9. Вопросы для самопроверки
- •7. Методы оптимизации
- •7.1. Математическая формулировка задач оптимизации
- •7.2. Методы нелинейного программирования
- •7.2.1 Градиентный метод
- •7.2.2. Метод Ньютона
- •7.2.3. Учёт ограничений в виде равенств
- •7.2.4. Учет ограничений в виде неравенств
- •7.3. Заключение по главе 7
- •7.2.6. Вопросы для самопроверки
- •8. Оптимизация режимов энергосистем
- •8.1. Экономическое распределение активной нагрузки между тепловыми электростанциями методом равенства относительных приростов
- •8.2. Примеры распределение активной мощности между станциями методом равенства относительных приростов
- •8.3. Применение методов нелинейного программирования для решения задач оптимизации режимов энергосистем
- •8.3. Распределение нагрузки в энергосистеме с гэс и тэс
- •8.4 Заключение по главе 8
- •8.5. Вопросы для самопроверки
- •Глава 9. Оптимальное использование водных ресурсов гидроэлектростанций
- •9.1.Требования к режимам гидроэлектростанции энергетических и водохозяйственных систем
- •9.2. Основные принципы управления режимами гэс
- •9.4. Показатели оценки режимов гэс
- •9.5. Оптимизация длительных режимов гэс
- •9.6. Постановка задачи оптимизации долгосрочных режимов гэс
- •9.6. Методы оптимизации режима водохранилища одиночной гэс
- •9.7. Особенности оптимизации режимов каскада гэс
- •9.7. Схема расчетов по рациональному использованию гидроэнергетических ресурсов
- •9.8. Заключение по главе 9
- •9.9. Вопросы для самопроверки
- •Заключение по разделу 2
- •10.2. Модели и методы адресного разделения потоков и потерь мощности
- •9.3. Пример разделения потоков и потерь мощности
- •10.4. Количественные показатели адресных расчетов потоков и потерь мощности в системе
- •10.5. Типовые задачи адресного распределения потерь мощности и энергии
- •10.5. Методика адресного распределения потерь мощности на примере сетевого предприятия
- •10.7. Эквивалентирование сети с использованием эквивалентных характеристик потерь мощности
- •10.8. Развитие методов расчета режимов системы для реализации адресного принципа
- •10.9. Задача адресной оценки мощности при использовании хозяйственно- технологической модели системы
- •10.10. Закдача расчета узловых цен мощностей станций и нагрузок ээс на часовых интервалах в течении суток
- •10.12. Заключение по главе 10
- •10.13. Вопросы для самопроверки
- •Глава 11. Расчет режимов ээс с использованием схемы ээс с электрическим эквивалентом ее энергетических и стоимостных параметров
- •11.1 Моделирование ээс с использованием электрического эквивалента ее энергетических и стоимостных величин
- •11.2. Модель системы и ее структурных элементов при использовании электрического эквивалента
- •11.3. Моделирование энергетических характеристик предприятий в электрической модели ээс
- •11.4.Моделирование ээс с использованием электрического эквивалента
- •11.6. Структурная модель адресного расчета стоимости потоков и потерь мощности и энергии с использованием электрического эквивалннта.
- •11.6. Заключение по главе 11
- •11.7. Вопросы для самопроверки
- •Глава 12. Модели и методы прогнозирования электропотребления и графиков нагрузки ээс
- •12.1. Основы прогнозирования
- •12.2. Статистическое моделирование
- •12.3. Модели долгосрочного прогнозирования электропотребления и мощности нагрузки электроэнергетических систем с учетом особенностей их функционирования на электроэнергетическом рынке
- •12.4. Методика расчетов прогнозирования электропотребления и мощности нагрузки на примере ао – энерго с упреждением на год
- •12.5. Прогнозирование графика нагрузки ээс
- •10.6. Статические модели графика нагрузки ээс
- •10.7. Использование ранговых моделей для прогнозирования нагрузок в узлах электрической сети
- •12.8. Заключение по главе 10
- •12.9. Вопросы для самопроверки
- •12.10. Заключение по разделу 3
- •Литература
- •Предметный указатель
1.2. Инновационные направления развития техники и технологии производства в электроэнергетических системах
Все передовое, что есть в развитии техники, традиционно используется в энергетике. Инновационный принцип является базовым при создании новых объектов, модернизации и расширении существующих. Приведем примеры инновационных решений.
За последние 10 лет КПД ТЭС повысился примерно на 5…10% за счет новых решений в котельном и турбинном оборудовании.
Установленная мощность многих станций увеличилась за счет реконструкции генераторов (усиления изоляции обмоток генераторов и новых систем их охлаждения).
Увеличилась надежность электротехнического оборудования за счет созданных систем диагностики.
Развиваются средства защиты и автоматики на основе использования микропроцессоров.
Создаются новые изоляционные материалы воздушных и кабельных ЛЭП, обмоток генераторов и др. оборудования, что приводит к снижению потерь электроэнергии, увеличивает пропускную способность и надежность ЛЭП.
Громадная работа проводится по компьютеризации управления с применением новейших вычислительных средств и технологий обработки информации.
На основе компьютеризации созданы новые сисистемы диагностики, управления, оптимизации режимов.
Получили развитие методы моделирования режимных задач и создания прикладных алгоритмов с использованием нейронных сетей, нечетких моделей, экспертной статистической обработки информации, новых принципов моделирования систем и др.
Получила развитие теория управления электроэнергетическими системами.
Все это говорит о необходимости рассмотрения не только традиционных и хорошо опробованных положений, но новых идей и методов. Без этого современные знания будут неполноценными
1.3. Режимные задачи их состав и содержание
Параметры режима.
Состав параметров режима трудно назвать достаточно полно. Параметры режима включают характерные величины определенного рабочего состояния техники и технологий. Назовем только наиболее характерные из них.
Электрические параметры электрических систем: ток, напряжение, мощность, частота.
Энергетические параметры силового оборудования: мощность, энергия КПД, потери энергии ( основного и вспомогательного оборудования).
Энергетические параметры стаций: мощность, энергия, транспорт мощности, потери при транспорте и пр.
Параметры режима меняются в процессе работы объектов, их определение и является целью и содержанием режимных задач. Изменяются характеристики техники, технологического процесса, производственного процесса. Меняется качество энергетических ресурсов, требования потребителей к энергоснабжению. Поэтому требуются адаптивные модели решения разнообразных задач и инструментарии их расчета и уточнения. Содержание задач определяется технологическим и производственным процессами.
Технологический процесс в энергосистеме.
Технологический процесс это процесс преобразования первичного энергетического ресурса (органического топлива, гидроэнергии, ядерного топлива) в конечную продукцию (электрическую энергию, тепловую энергию). Параметры и показатели технологического процесса определяют эффективность производства. Схематично технологический процесс показан на рисунок 1.2. Из рисунка видно, что имеется несколько этапов преобразования энергии. В котле К энергия горения топлива преобразуется в тепловую. Котел это парогенератор. В турбине Т тепловая энергия преобразуется в механическую. В генераторе Г механическая энергия преобразуется в электрическую. Напряжение электрической энергии в процессе ее передачи по ЛЭП от станции к потребителю трансформируется, что обеспечивает экономичность передачи. Эффективность технологического процесса зависит от всех этих звеньев. Следовательно, имеется комплекс режимных задач, связанных с работой котлов, турбин ТЭС, турбин ГЭС, ядерных реакторов, электрического оборудования (генераторов, трансформаторов, ЛЭП и др.). Необходимо выбирать состав работающего оборудования, режим его загрузки и использования, соблюдать все ограничения и нормативы на технические параметры, добиваться максимального КПД.
Рисунок 1.2. Схема технологического процесса в энергосистеме
К – котел, Т- турбина, Г- генератор, Т- трансформатор, ЛЭП - линии электропередачи
Производственный процесс энергетических объектов.
Производственный процесс предприятия включает все сферы деятельности предприятия, а не только технологический цикл и технологические сферы деятельности (рисунок 1.3). При управлении производством имеются различные общие сферы: снабжение, планирование, труд, кадры и пр. Они также влияют на издержки управления, цены на продукцию. Успех на рынке прямо связан с эффективностью всех функций управления, но немаловажную роль играют режимные задачи, которые рассматриваются как элемент различных сфер деятельности. Затраты на производство электроэнергетической продукции в цикле технологического процесса примерно на 50% определяют общие издержки и их снижение зависит от режимных задач.
Рисунок 1.3. Схема производственного процесса в энергетике.
