
- •Вопрос1 Классическая механика и границы ее применимости. Материальная точка. Система отсчета. Кинематические уравнения
- •Закон движения дается векторным уравнением . При координатном способе положение точки а определяется координатами X, y, z, а закон движения задается тремя уравнениями:
- •Вопрос 2 Траектория, путь, перемещение. Средняя и мгновенная скорости. Равномерное прямолинейное движение
- •Вопрос 3 Ускорение. Нормальная и тангенциальная составляющие ускорения. Равнопеременное движение
- •Вопрос4 Движение материальной точки по окружности. Угол поворота, угловая скорость, угловое ускорение
- •Вопрос 5. Связь между линейными и угловыми кинематическими характеристиками
- •Вопрос 6.Первый закон Ньютона. Инерциальные и неинерциальные системы отсчета
- •Современная формулировка
- •Вопрос 7. Cила — векторная физическая величина, являющаяся мерой интенсивности взаимодействия тел.
- •Вопрос 8. Третий закон Ньютона утверждает, что силы взаимодействия двух материальных точек равны по модулю, противоположны по направлению и действуют вдоль прямой, соединяющей эти материальные точки:
- •Вопрос 9. Закон всемирного тяготения
- •Формула закона всемирного тяготения
- •Гравитационная постоянная
- •Вопрос 10 Силы упругости
- •Вопрос 11 (трение)
- •Вопрос 12 (системы)
- •Вопрос 14 Центр масс, центр ине́рции (в механике) геометрическая точка, характеризующая движение тела или системы частиц как целого. Не следует путать с центром тяжести.
- •Вопрос 16 Консервативные и неконсервативные силы. Связь между силой и потенциальной энергией.
- •18.Работа гравитационных сил
- •Вопрос 20 Виды механической энергии. Кинетическая энергия и работа
- •Вопрос 21 Закон сохранения механической энергии. Общефизический закон сохранения и превращения энергии
- •Вопрос 23 Момент силы и момент импульса относительно неподвижной точки и относительно оси
- •Вопрос 26 Закон сохранения момента импульса системы материальных точек
- •27.Абсолютно твердое тело. Степени свободы, обобщенные координаты. Уравнения движения и равновесия твердого тела
- •28 .Момент импульса абсолютно твердого тела относительно оси вращения
- •Таким образом или , (7)
- •Вопрос 31 Кинетическая энергия при плоском движении абсолютно твердого тела. Кинетическая энергия вращения
- •Вопрос 32 Работа и мощность при вращательном движении
- •Вопрос 33 Преобразования Галилея. Закон сложения скоростей в классической механике. Механический принцип относительности
- •Вопрос 34. Постоянство скорости света в вакууме. Опыты Майкельсона-Морли
- •Вопрос 35. Постулаты Эйнштейна. Преобразования Лоренца
- •Вопрос 36.Следствия из преобразований Лоренца: замедление времени и сокращение длины тел. Интервал
- •37. Закон сложения скоростей в релятивистской механике
- •Вопрос 38. Масса в ньютоновской и релятивистской механике.
- •Вопрос 39. Энергия, импульс в релятивистской механике.
- •Вопрос 40. Основное уравнение релятивистской динамики. Закон сохранения релятивистского импульса.
- •Вопрос 41.Кинетическая энергия релятивистской частицы. Закон сохранения энергии
- •Вопрос 42.Пространство-время как форма существования материи
- •Вопрос 44
- •Вопрос 45.Скорость, ускорение и энергия гармонических колебаний.
- •Вопрос 46 . Сложение гармонических колебаний одинакового направления и одинаковой частоты.
- •48 Сложение взаимно перпендикулярных колебаний.
- •49. Математический маятник
- •Вопрос 50 Физический маятник
- •51 Дифференциальное уравнение свободных затухающих колебаний (механических) и его решение.
- •52. Дифференциальное уравнение затухающих колебаний и его решение.
- •Вопрос 53 (диф. Ур. Колебаний)
- •Вопрос 54.
Таким образом или , (7)
где величина
Рис. 2

называется моментом инерции тела относительно оси Z .
Тогда
уравнение динамики тела, вращающегося
относительно неподвижной оси Z
[см. (6)], можно
записать в виде
MzВНЕШН
или
MzВНЕШН.
Вопрос № 29 Момент инерции тела относительно оси вращения
Момент инерции - величина, характеризующая распределения масс в теле и являющаяся наряду с массой мерой инертности тела при непоступательном движении.
Момент инерции тела относительно оси вращения зависит от массы тела и от распределения этой массы. Чем больше масса тела и чем дальше она отстоит от воображаемой оси, тем большим моментом инерции обладает тело. Момент инерции элементарной (точечной) массы mi, отстоящей от оси на расстоянии ri, равен:
.
Момент инерции всего тела относительно оси равен:
или, для непрерывно распределенной массы:
.
Вычисление моментов инерции во многих случаях можно упростить, используя соображения симметрии и теорему Штейнера. Согласно теореме Штейнера момент инерции тела относительно какой-либо оси IA равен моменту инерции тела равен инерции тела относительно параллельной оси, проходящей через центр масс IC, сложенному с величиной ma2, где a - расстояние между осями:
IA = IC + ma2.
2) Теорема Штейнера
Теорема Гюйгенса-Штейнера, или просто теорема Штейнера (названа по имени немецкого математика Якова Штейнера и голландского математика, физика и астронома Христиана Гюйгенса):
Момент инерции тела относительно какой-либо оси равен моменту инерции относительно параллельной оси, проходящей через центр инерции, сложенной с величиной m*(R*R), где R - расстояние между осями.
Угловое ускорение, которое тело приобретает под действием момента сил, прямо пропорционально результирующему моменту всех внешних сил, приложенных к телу, и обратно пропорциональна моменту инерции тела относительно некоторой оси.
Для краткости добавлю к своему ответу данную шпаргалку:
Вопрос № 30.Основное уравнение динамики вращательного движения.
Для вывода основного уравнения динамики вращательного движения используем формулу для определения работы при вращении тела
,
(7)
где
–
момент силы относительно оси Z.
Работа при вращении тела идет на
увеличение его кинетической энергии
.
Продифференцируем выражение (5):
;
(8)
,
Учитывая,
что
,
,
получаем
.
В векторном виде это выражение имеет вид
.
(9)
Уравнение (9) представляет собой уравнение динамики вращательного движения твердого тела относительно неподвижной оси.
Вопрос 31 Кинетическая энергия при плоском движении абсолютно твердого тела. Кинетическая энергия вращения
Плоским (плоскопараллельным) называется такое движение, при котором все точки тела движутся в параллельных плоскостях
кинетическая энергия при плоском движении равна сумме кинетических энергий поступательного и вращательного движений
.
если разбить плоское движение тела на поступательное со скоростью центра масс Vc и вращательное с угловой скоростью w вокруг оси, проходящей через центр масс тела, то кинетическая энергия распадается на два независимых слагаемых, одно из которых определяется только скоростью центра масс Vc, а другое – угловой скоростью w.
при
вращении тела относительно оси z,
проходящей через центр масс С,
его кинетическая энергия