
- •Вопрос1 Классическая механика и границы ее применимости. Материальная точка. Система отсчета. Кинематические уравнения
- •Закон движения дается векторным уравнением . При координатном способе положение точки а определяется координатами X, y, z, а закон движения задается тремя уравнениями:
- •Вопрос 2 Траектория, путь, перемещение. Средняя и мгновенная скорости. Равномерное прямолинейное движение
- •Вопрос 3 Ускорение. Нормальная и тангенциальная составляющие ускорения. Равнопеременное движение
- •Вопрос4 Движение материальной точки по окружности. Угол поворота, угловая скорость, угловое ускорение
- •Вопрос 5. Связь между линейными и угловыми кинематическими характеристиками
- •Вопрос 6.Первый закон Ньютона. Инерциальные и неинерциальные системы отсчета
- •Современная формулировка
- •Вопрос 7. Cила — векторная физическая величина, являющаяся мерой интенсивности взаимодействия тел.
- •Вопрос 8. Третий закон Ньютона утверждает, что силы взаимодействия двух материальных точек равны по модулю, противоположны по направлению и действуют вдоль прямой, соединяющей эти материальные точки:
- •Вопрос 9. Закон всемирного тяготения
- •Формула закона всемирного тяготения
- •Гравитационная постоянная
- •Вопрос 10 Силы упругости
- •Вопрос 11 (трение)
- •Вопрос 12 (системы)
- •Вопрос 14 Центр масс, центр ине́рции (в механике) геометрическая точка, характеризующая движение тела или системы частиц как целого. Не следует путать с центром тяжести.
- •Вопрос 16 Консервативные и неконсервативные силы. Связь между силой и потенциальной энергией.
- •18.Работа гравитационных сил
- •Вопрос 20 Виды механической энергии. Кинетическая энергия и работа
- •Вопрос 21 Закон сохранения механической энергии. Общефизический закон сохранения и превращения энергии
- •Вопрос 23 Момент силы и момент импульса относительно неподвижной точки и относительно оси
- •Вопрос 26 Закон сохранения момента импульса системы материальных точек
- •27.Абсолютно твердое тело. Степени свободы, обобщенные координаты. Уравнения движения и равновесия твердого тела
- •28 .Момент импульса абсолютно твердого тела относительно оси вращения
- •Таким образом или , (7)
- •Вопрос 31 Кинетическая энергия при плоском движении абсолютно твердого тела. Кинетическая энергия вращения
- •Вопрос 32 Работа и мощность при вращательном движении
- •Вопрос 33 Преобразования Галилея. Закон сложения скоростей в классической механике. Механический принцип относительности
- •Вопрос 34. Постоянство скорости света в вакууме. Опыты Майкельсона-Морли
- •Вопрос 35. Постулаты Эйнштейна. Преобразования Лоренца
- •Вопрос 36.Следствия из преобразований Лоренца: замедление времени и сокращение длины тел. Интервал
- •37. Закон сложения скоростей в релятивистской механике
- •Вопрос 38. Масса в ньютоновской и релятивистской механике.
- •Вопрос 39. Энергия, импульс в релятивистской механике.
- •Вопрос 40. Основное уравнение релятивистской динамики. Закон сохранения релятивистского импульса.
- •Вопрос 41.Кинетическая энергия релятивистской частицы. Закон сохранения энергии
- •Вопрос 42.Пространство-время как форма существования материи
- •Вопрос 44
- •Вопрос 45.Скорость, ускорение и энергия гармонических колебаний.
- •Вопрос 46 . Сложение гармонических колебаний одинакового направления и одинаковой частоты.
- •48 Сложение взаимно перпендикулярных колебаний.
- •49. Математический маятник
- •Вопрос 50 Физический маятник
- •51 Дифференциальное уравнение свободных затухающих колебаний (механических) и его решение.
- •52. Дифференциальное уравнение затухающих колебаний и его решение.
- •Вопрос 53 (диф. Ур. Колебаний)
- •Вопрос 54.
Вопрос 16 Консервативные и неконсервативные силы. Связь между силой и потенциальной энергией.
Сила, действующая на материальную точку, называется консервативной (потенциальной), если работа этой силы зависит только от начального и конечного положений точки. Работа консервативной силы не зависит ни от вида траектории, ни от закона движения материальной точки по траектории.
Работа консервативной силы = 0
Работа неконсертвативной силы не равна 0
Силы тяготения и упругости являются консервативными, а силы трения неконсервативными.
Потенциальная энергия зависит от положения тела. В зависимости от того, куда мы будем (чуть-чуть) смещаться от данной точки, потенциальная энергия будет либо уменьшаться, либо увеличиваться. Вот здесь и живет связь между потенциальной энергией и силой. Сила показывает направление, в котором потенциальная энергия уменьшается быстрее всего, а величина силы определяется скоростью изменения. Другими словами, сила - градиент потенциальной энергии.
17 .
A=k(x*x)\2 работа силы упругости (х*х ето х в квадрате)
Форумала пот.энергии Wп= k(x*x)\2
18.Работа гравитационных сил
Если
тело перемещать с расстояния R1
до R2, то работа
Потенциальная енергия мат.точки в поле сил тяготения
Wп= - G m1m2\r
Вопрос 20 Виды механической энергии. Кинетическая энергия и работа
Кинетической
энергией системы называется сумма
кинетических энергий материальных
точек, из которых эта система состоит
или на которые ее можно мысленно
разделить:
.
работа всех сил, действующих на систему материальных точек, равна приращению кинетической энергии этой системы.
Вопрос 21 Закон сохранения механической энергии. Общефизический закон сохранения и превращения энергии
полная механическая энергия системы материальных точек, находящихся под действием консервативных сил остается постоянной
Е = const
Полное количество энергии в изолированной системе тел и полей всегда остается постоянным; энергия лишь может переходить из одной формы в другую.
Вопрос №21 Закон сохранения механической энергии. Общефизический закон сохранения и превращения энергии.
Закон сохранения механической энергии - Механическая энергия консервативной механической системы сохраняется во времени. Проще говоря, при отсутствии диссипативных сил (например, сил трения) механическая энергия не возникает из ничего и не может никуда исчезнуть.
Закон сохранения механической энергии - Сумма кинетической и потенциальной энергии тел, составляющих замкнутую систему и взаимодействующих между собой посредством сил тяготения и сил упругости, остается неизменной.
Для замкнутой системы физических тел, например, справедливо равенство Ek1 + Ep1 = Ek2 + Ep2, где Ek1, Ep1 — кинетическая и потенциальная энергии системы какого-либо взаимодействия,Ek2, Ep2 — соответствующие энергии после.
Полная механическая энергия, т.е. сумма потенциальной и кинетической энергии тела, остается постоянной, если действуют только силы упругости и тяготения и отсутствуют силы трения.
Превращение механической энергии – При движение тел может происходить изменение одного вида механической энергии в другой: потенциальная энергия может превратиться в кинетическую и обратно. Кинетическая энергия может превратиться в энергию упругой деформации тел. В отсутствии терния механическая энергия остается неизменной.
Сайт с гифкой:
http://files.school-collection.edu.ru/dlrstore/b0153253-33e0-838e-0025-4be4b1c5bb90/00144676433967734.htm
Вопрос №22 Абсолютно упругий и абсолютно неупругий удары.
Удар - толчок, кратковременное взаимодействие тел, при котором происходит перераспределение кинетической энергии. В физике под ударом понимают такой тип взаимодействия движущихся тел, при котором временем взаимодействия можно пренебречь.
Абсолютно упругий удар - модель соударения, при которой полная кинетическая энергия системы сохраняется. В классической механике при этом пренебрегают деформациями тел. Соответственно, считается, что энергия на деформации не теряется, а взаимодействие распространяется по всему телу мгновенно. Хорошей моделью абсолютно упругого удара является столкновение бильярдных шаров или упругих мячиков.
Абсолютно неупругий удар - удар, в результате которого компоненты скоростей тел, нормальные площадке касания, становятся равными. Если удар был центральным (скорости были перпендикулярны касательной плоскости), то тела соединяются и продолжают дальнейшее своё движение как единое тело.