
- •Вопрос1 Классическая механика и границы ее применимости. Материальная точка. Система отсчета. Кинематические уравнения
- •Закон движения дается векторным уравнением . При координатном способе положение точки а определяется координатами X, y, z, а закон движения задается тремя уравнениями:
- •Вопрос 2 Траектория, путь, перемещение. Средняя и мгновенная скорости. Равномерное прямолинейное движение
- •Вопрос 3 Ускорение. Нормальная и тангенциальная составляющие ускорения. Равнопеременное движение
- •Вопрос4 Движение материальной точки по окружности. Угол поворота, угловая скорость, угловое ускорение
- •Вопрос 5. Связь между линейными и угловыми кинематическими характеристиками
- •Вопрос 6.Первый закон Ньютона. Инерциальные и неинерциальные системы отсчета
- •Современная формулировка
- •Вопрос 7. Cила — векторная физическая величина, являющаяся мерой интенсивности взаимодействия тел.
- •Вопрос 8. Третий закон Ньютона утверждает, что силы взаимодействия двух материальных точек равны по модулю, противоположны по направлению и действуют вдоль прямой, соединяющей эти материальные точки:
- •Вопрос 9. Закон всемирного тяготения
- •Формула закона всемирного тяготения
- •Гравитационная постоянная
- •Вопрос 10 Силы упругости
- •Вопрос 11 (трение)
- •Вопрос 12 (системы)
- •Вопрос 14 Центр масс, центр ине́рции (в механике) геометрическая точка, характеризующая движение тела или системы частиц как целого. Не следует путать с центром тяжести.
- •Вопрос 16 Консервативные и неконсервативные силы. Связь между силой и потенциальной энергией.
- •18.Работа гравитационных сил
- •Вопрос 20 Виды механической энергии. Кинетическая энергия и работа
- •Вопрос 21 Закон сохранения механической энергии. Общефизический закон сохранения и превращения энергии
- •Вопрос 23 Момент силы и момент импульса относительно неподвижной точки и относительно оси
- •Вопрос 26 Закон сохранения момента импульса системы материальных точек
- •27.Абсолютно твердое тело. Степени свободы, обобщенные координаты. Уравнения движения и равновесия твердого тела
- •28 .Момент импульса абсолютно твердого тела относительно оси вращения
- •Таким образом или , (7)
- •Вопрос 31 Кинетическая энергия при плоском движении абсолютно твердого тела. Кинетическая энергия вращения
- •Вопрос 32 Работа и мощность при вращательном движении
- •Вопрос 33 Преобразования Галилея. Закон сложения скоростей в классической механике. Механический принцип относительности
- •Вопрос 34. Постоянство скорости света в вакууме. Опыты Майкельсона-Морли
- •Вопрос 35. Постулаты Эйнштейна. Преобразования Лоренца
- •Вопрос 36.Следствия из преобразований Лоренца: замедление времени и сокращение длины тел. Интервал
- •37. Закон сложения скоростей в релятивистской механике
- •Вопрос 38. Масса в ньютоновской и релятивистской механике.
- •Вопрос 39. Энергия, импульс в релятивистской механике.
- •Вопрос 40. Основное уравнение релятивистской динамики. Закон сохранения релятивистского импульса.
- •Вопрос 41.Кинетическая энергия релятивистской частицы. Закон сохранения энергии
- •Вопрос 42.Пространство-время как форма существования материи
- •Вопрос 44
- •Вопрос 45.Скорость, ускорение и энергия гармонических колебаний.
- •Вопрос 46 . Сложение гармонических колебаний одинакового направления и одинаковой частоты.
- •48 Сложение взаимно перпендикулярных колебаний.
- •49. Математический маятник
- •Вопрос 50 Физический маятник
- •51 Дифференциальное уравнение свободных затухающих колебаний (механических) и его решение.
- •52. Дифференциальное уравнение затухающих колебаний и его решение.
- •Вопрос 53 (диф. Ур. Колебаний)
- •Вопрос 54.
48 Сложение взаимно перпендикулярных колебаний.
6.1.
Пусть
и
,
тогда траекторией будет прямая линия,
рис. 5:
.
6.2.
При
и
,
траекторией будет эллипс, ( рис. 6):
(x2/A2)+(y2/B2)=1.
При разных частотах складывающихся колебаний результирующие траектории будут иметь более сложный вид.
Замкнутые траектории, прочерчиваемые точкой, совершающей одновременно два взаимно перпендикулярных колебания, называются фигурами Лиссажу.
49. Математический маятник
Математи́ческий ма́ятник — осциллятор, представляющий собой механическую систему, состоящую из материальной точки, находящейся наневесомой нерастяжимой нити или на невесомом стержне в однородном поле сил тяготения[1]. Период малых собственных колебанийматематического маятника длины L неподвижно подвешенного в однородном поле тяжести с ускорением свободного падения g равен
и не зависит[2] от амплитуды колебаний и массы маятника.
Плоский математический маятник со стержнем — система с одной степенью свободы. Если же стержень заменить на растяжимую нить, то это система с двумя степенями свободы со связью. Пример школьной задачи, в которой важен переход от одной к двум степеням свободы.
Уравнение колебаний маятника
Колебания математического маятника описываются обыкновенным дифференциальным уравнением вида
где
―
положительная константа, определяемая
исключительно из параметров маятника.
Неизвестная функция
―
это угол отклонения маятника в момент
от
нижнего положения равновесия, выраженный
в радианах;
,
где
―
длина подвеса,
― ускорение
свободного падения.
Уравнение малых колебаний маятника
около нижнего положения равновесия
(т. н. гармоническое уравнение) имеет
вид:
.
Вопрос 50 Физический маятник
Э
Рис. 8
то твердое тело, совершающее колебания под действием силы тяжести вокруг неподвижной горизонтальной оси подвеса, не проходящей через центр масс С тела. На маятник, отклоненный на малый угол φ действует момент силы, который сообщает угловое ускорение.
.
Решением его будет
.
Период колебания
,
(15)
где L = J/ml - приведенная длина физического маятника; L - это длина такого математического маятника, период колебаний которого совпадает с периодом колебания данного физического маятника.
51 Дифференциальное уравнение свободных затухающих колебаний (механических) и его решение.
Автоколебания.
Затухающие колебания — колебания, амплитуды которых из-за потерь энергии реальной колебательной системой с течением времени уменьшаются.
Закон затухания колебаний определяется свойствами колебательных систем. Обычно рассматривают линейные системы — идеализированные реальные системы, в которых параметры, определяющие физические свойства системы, в ходе процесса не изменяется. Различные по своей природе линейные системы описываются идентичными линейными дифференциальными уравнениями.
Дифференциальное уравнение свободных затухающих колебаний линейной системы
где
s — колеблющаяся величина, описывающая
тот или иной физический процесс, δ =
const — коэффициент затухания, (ω0 —
циклическая частота свободных незатухающих
колебаний той же колебательной системы,
т. е. при δ =0 (при отсутствии потерь
энергии) называется собственной частотой
колебательной системы. Решение уравнения
рассмотрим в виде
(7.1) где u=u(t).
После нахождения первой и второй производных и их подстановки в (1) получим
Решение
уравнения зависит от знака коэффициента
перед искомой величиной. Пусть этот
коэффициент положителен:
(7.2)
Тогда получим уравнение решением которого является функция u=A0cos(ωt+φ). Значит, решение уравнения (7.1) в случае малых затуханий