
- •Вопрос1 Классическая механика и границы ее применимости. Материальная точка. Система отсчета. Кинематические уравнения
- •Закон движения дается векторным уравнением . При координатном способе положение точки а определяется координатами X, y, z, а закон движения задается тремя уравнениями:
- •Вопрос 2 Траектория, путь, перемещение. Средняя и мгновенная скорости. Равномерное прямолинейное движение
- •Вопрос 3 Ускорение. Нормальная и тангенциальная составляющие ускорения. Равнопеременное движение
- •Вопрос4 Движение материальной точки по окружности. Угол поворота, угловая скорость, угловое ускорение
- •Вопрос 5. Связь между линейными и угловыми кинематическими характеристиками
- •Вопрос 6.Первый закон Ньютона. Инерциальные и неинерциальные системы отсчета
- •Современная формулировка
- •Вопрос 7. Cила — векторная физическая величина, являющаяся мерой интенсивности взаимодействия тел.
- •Вопрос 8. Третий закон Ньютона утверждает, что силы взаимодействия двух материальных точек равны по модулю, противоположны по направлению и действуют вдоль прямой, соединяющей эти материальные точки:
- •Вопрос 9. Закон всемирного тяготения
- •Формула закона всемирного тяготения
- •Гравитационная постоянная
- •Вопрос 10 Силы упругости
- •Вопрос 11 (трение)
- •Вопрос 12 (системы)
- •Вопрос 14 Центр масс, центр ине́рции (в механике) геометрическая точка, характеризующая движение тела или системы частиц как целого. Не следует путать с центром тяжести.
- •Вопрос 16 Консервативные и неконсервативные силы. Связь между силой и потенциальной энергией.
- •18.Работа гравитационных сил
- •Вопрос 20 Виды механической энергии. Кинетическая энергия и работа
- •Вопрос 21 Закон сохранения механической энергии. Общефизический закон сохранения и превращения энергии
- •Вопрос 23 Момент силы и момент импульса относительно неподвижной точки и относительно оси
- •Вопрос 26 Закон сохранения момента импульса системы материальных точек
- •27.Абсолютно твердое тело. Степени свободы, обобщенные координаты. Уравнения движения и равновесия твердого тела
- •28 .Момент импульса абсолютно твердого тела относительно оси вращения
- •Таким образом или , (7)
- •Вопрос 31 Кинетическая энергия при плоском движении абсолютно твердого тела. Кинетическая энергия вращения
- •Вопрос 32 Работа и мощность при вращательном движении
- •Вопрос 33 Преобразования Галилея. Закон сложения скоростей в классической механике. Механический принцип относительности
- •Вопрос 34. Постоянство скорости света в вакууме. Опыты Майкельсона-Морли
- •Вопрос 35. Постулаты Эйнштейна. Преобразования Лоренца
- •Вопрос 36.Следствия из преобразований Лоренца: замедление времени и сокращение длины тел. Интервал
- •37. Закон сложения скоростей в релятивистской механике
- •Вопрос 38. Масса в ньютоновской и релятивистской механике.
- •Вопрос 39. Энергия, импульс в релятивистской механике.
- •Вопрос 40. Основное уравнение релятивистской динамики. Закон сохранения релятивистского импульса.
- •Вопрос 41.Кинетическая энергия релятивистской частицы. Закон сохранения энергии
- •Вопрос 42.Пространство-время как форма существования материи
- •Вопрос 44
- •Вопрос 45.Скорость, ускорение и энергия гармонических колебаний.
- •Вопрос 46 . Сложение гармонических колебаний одинакового направления и одинаковой частоты.
- •48 Сложение взаимно перпендикулярных колебаний.
- •49. Математический маятник
- •Вопрос 50 Физический маятник
- •51 Дифференциальное уравнение свободных затухающих колебаний (механических) и его решение.
- •52. Дифференциальное уравнение затухающих колебаний и его решение.
- •Вопрос 53 (диф. Ур. Колебаний)
- •Вопрос 54.
Вопрос 44
Вопрос 45.Скорость, ускорение и энергия гармонических колебаний.
Колебания, при которых изменения физических величин происходят по закону синуса или косинуса, называются гармоническими колебаниями.
ω – частота колебания, xm – амплитуда колебания, φ0 и φ0’ – начальные фазы колебания.
Конкретный вид функции (синус или косинус) зависит от способа выведения системы из положения равновесия.
Если выведение происходит толчком (сообщается кинетическая энергия), то при t=0 смещение х=0, следовательно, удобнее пользоваться функцией sin, положив φ0’=0; при отклонении от положения равновесия (сообщается потенциальная энергия) при t=0 смещение х=хm, следовательно, удобнее пользоваться функцией cos и φ0=0.
Выражение, стоящее под знаком cos или sin, называется фазой колебания
Величина
- максимальная скорость колебательного
движения (амплитуда колебаний скорости).
Следовательно, для скорости при гармоническом колебании имеем:
,
а для случая нулевой начальной фазы
Величина
- максимальное ускорение (амплитуда
колебаний ускорения). Следовательно,
для ускорения имеем:
,
а для случая нулевой начальной фазы
Вопрос 46 . Сложение гармонических колебаний одинакового направления и одинаковой частоты.
Пусть совершаются два гармонических колебания одного направления и одинаковой частоты
(1)
Уравнение результирующего колебания будет иметь вид
(2)
Убедимся в этом, сложив уравнения системы
(3)
Применив теорему косинусов суммы и сделав алгебраические преобразования:
(4)
Можно найти такие величины А и φ0 , чтобы удовлетворялись уравнения
(5)
Рассматривая (5) как два уравнения с двумя неизвестными А и φ0, найдем, возведя их в квадрат и сложив, а затем разделив второе на первое:
(6)
Подставляя (5) в (4), получим
(7)
Или окончательно, используя теорему косинусов суммы, имеем:
(8)
Тело, участвуя в двух гармонических колебаниях одного направления и одинаковой частоты, совершает также гармоническое колебание в том же направлении и с той же частотой, что и складываемые колебания. Амплитуда результирующего колебания зависит от разности фаз (φ2-φ1) сгладываемых колебаний.
В зависимости от разности фаз (φ2-φ1):
1) (φ2-φ1) = ±2mπ (m=0, 1, 2, …), тогда A= А1+А2, т. е. амплитуда результирующего колебания А равна сумме амплитуд складываемых колебаний;
2) (φ2-φ1) = ±(2m+1)π (m=0, 1, 2, …), тогда A= |А1-А2|, т. е. амплитуда результирующего колебания равна разности амплитуд складываемых колебаний
Дополнительно
Периодические изменения амплитуды колебания, возникающие при сложении двух гармонических колебаний с близкими частотами, называются биением.
Пусть два колебания мало отличаются по частоте. Тогда амплитуды складываемых колебаний равны А, а частоты равны ω и ω+Δω, причем Δω намного меньше ω. Начало отсчета выберем так, чтобы начальные фазы обоих колебаний были равны нулю:
(8)
Решим систему
(9)
(10)
(11)
Решение системы:
(12)
Результирующее колебание можно рассматривать как гармоническое с частотой ω, амплитуда А, которого изменяется по следующему периодическому закону:
(13)
Частота изменения А в два раза больше частоты изменения косинуса. Частота биений равна разности частот складываемых колебаний: ωб = Δω