Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Studmed.ru_zhdanova-ns-perspektiva_5112a6e4d1d.doc
Скачиваний:
0
Добавлен:
31.12.2019
Размер:
6.03 Mб
Скачать

3. Перспектива многоугольников

Предметы окружающего мира в основе имеют форму простейших гео­метрических тел. При рисовании даже сложные формы человеческого тела могут быть упрощены до простых геометрических поверхностей. На пер­вых этапах обучения рисованию рекомендуется начинать с простых гео­метрических тел, где легче проследить перспективные и визуальные иска­жение формы в пространстве.

Рассмотрим примеры построения перспективы многоугольников, рас­положенных в различных положениях по отношению к картинной плоско­сти при доступных и недоступных точках схода.

На картине (рис. 153) параллельно ее основанию задана сторонаАВ квад­рата. Требуется построить квадрат, расположенный в предметной плоскости.

94

0 10 20 30 40

Рис. 153 Рис. 154

При вершинах А и В построим прямые углы, для чего проведем глубин­ные прямые АР и ВР. Через вершину А (или В) проведем диагональ, пре­дельной точкой которой является дистанционная. Точка С на прямой АР определит положение стороны СЕ искомого квадрата.

Изображение квадратов таким способом используется при построении паркетов прямоугольной формы.

На основании картины (рис. 154) заданы стороны 010, 1020, 2030, 304 квадратных плит. Требуется построить перспективное изображение части пола, выложенного такими плитами.

Построим глубинные прямые сторон квадрата с главной точкой схо­да Р. Через точку 0 и D проведем диагональ квадратов, которая в пересече­нии с каждой глубинной прямой отметит точки 1,2,3,4. Через отмеченные точки проведем горизонтальные прямые, параллельные основанию карти­ны. Они определят перспективу квадратных плит, расположенных в плос­кости пола.

Поскольку предметную плоскость можно поворачивать и совмещать с картиной как вверх, так и вниз, то можно задать форму и размеры паркета в совмещенной плоскости внизу листа (рис. 155). Паркет может иметь бо­лее сложный рисунок, который хорошо вписывается в квадрат.

На картине (рис. 156) задана вертикальная сторона АВ квадрата. Тре­буется построить квадрат, который расположен перпендикулярно картин­ной и предметной плоскости.

Направлением сторон прямого угла при вершинах А и Б будут глубин­ные прямые АР и ВР. Чтобы отложить на них стороны квадрата, приведем АВ в горизонтальное положение АВ1 и перенесем его величину при помощи дистанционной точки на глубинную прямую АР. Точка С определит конец стороны СЕ квадрата.

На картине (рис. 157) сторона АВ квадрата вертикальная. Требуется построить квадрат, расположенный перпендикулярно к предметной плос­кости и под произвольным углом к картине.

95

Рис.155

Стороны квадрата, перпендикулярные к АВ, лежат на прямых, предель­ной точкой которых может быть любая точка линии горизонта, например А^. Величину стороныЛС квадрата определим при помощи масштабной точ­ки М„. Затем через точку С проведем вертикальную сторону СЕ квадрата.

Эти приемы построения квадрата можно использовать при изображе­нии треугольников в вертикальных плоскостях (рис. 158). Оба квадрата имеют одну и ту же предельную и масштабную точки. При сравнении они производят разное визуальное впечатление, хотя имеют одинаковые гео­метрические параметры.

Рис. 156 Рис.157

96

N.

Г"--—£

p 1

' ^D~

*-. -; • • V. ? »- • •*« i j^

*-"■%

Cy>

^-^

'

A

Рис. 158

На картине (рис. 159) сторона АВ квадрата лежит в предметной плос­кости. Ее предельной точкой является дистанционная точка D2. Требуется построить квадрат, лежащий в предметной плоскости.

Стороны прямых углов при вершинах А и В лежат на прямых с точкой схода Dx Чтобы определить положение четвертой стороны квадрата, най­дем вершину С. Она лежит на диагонали квадрата с предельной точкой Р.

На картине (рис. 160) задана большая сторона АВ прямоугольника с предельной точкой D2. Требуется построить прямоугольник, лежащий в предметной плоскости.

А

щ... ■■_■■ щ -=Z.

р

А.

D.

^

^

&>

^

Рис. 159

Рис. 160

7 Э-298

97

Рис. 161

73

Построение прямоугольника аналогично построению квадрата. Здесь предельной точкой диагонали квадрата будет любая точка А„ на линии го­ризонта и справа от главной точки Р.

Этим построением можно воспользоваться при построении паркета, выложенного прямоугольными плитами или елочкой. Форма и размеры паркета заданы в совмещенной плоскости внизу листа (рис. 161).

При построении перспективы паркета форма плитки может быть раз­ной, но принцип построения одинаковый (рис. 162), даже если паркет име­ет форму правильного шестиугольника, который необходимо изобразить с учетом перспективных сокращений.

При построении шестиугольника, лежащего в предметной плоскости и параллельного одной стороной основанию картины, угол при совмещенной точке зрения Sk образуется прямыми параллельными сторонам этого шес­тиугольника и составляет 60° (рис. 163).

Однако, в перспективе часто приходится изображать треугольники, которые расположены в предметной плоскости с произвольно расположен­ными сторонами. В этом случае целесообразней применять способ совме­щения.

98

Рис. 162

i

5,

/

fJ

\ p \p2

%?

iff^ii

Щ

\ •"."

h"'TAw

Рис. 163

99

Рис. 164

Построим треугольник ABC, натуральная величина которого задана в совмещенной плоскости (рис. 164). Проведем несовмещенной точки зрения прямые параллельные сторонам треугольника АВ и ВС, SkFl \\AB и S^ || ВС, и получим точки схода i*\ и F2. Для построения перспективного изображе­ния треугольника продолжим стороны АВ и ВС до пересечения с основани­ем картины в точках а0 и с0. Соединим полученные точки с точками схода. Из совмещеннойточки зрения Sk проведем лучи зрения_в каждую вершину треугольника ABC. При пересечении прямых a0F2 c &iA получим вершину А перспективного изображения треугольника. Аналогично получим все остальные вершины.

► Построение плоских фигур может осуществляться разными способами, из которых выбирают самый оптимальный, требующий меньше построе­ний и дающий больше наглядности.

100

Соседние файлы в предмете [НЕСОРТИРОВАННОЕ]