
- •Методичні вказівки для самостійної роботи студентів денної і заочної форми навчання з навчальної дисципліни „ Теплотехніка.”
- •Передмова
- •1 Програма з навчальної дисципліни „ Теплотехніка”
- •1 Мета та завдання дисципліни
- •1.1 Мета викладання дисцип
- •2.3 Основи теорії теплообміну.
- •Модуль 2
- •2.4 Системи теплопостачання харчових виробництв та охорона навколишнього середовища
- •Перелік літератури Основна
- •Додаткова.
- •Критерії успішності навчання
- •2 Рівняння стану ідеального газу. Перший та другий закони термодинаміки
- •3 Основні процеси ідеальних газів
- •Запитання до самоконтролю і повторення
- •Приклади розв'язування задач
- •Розв'язання
- •Розв'язання
- •Розв'язання
- •Розв'язання
- •Задачі для самостійного розв'язування
- •4 Основні закони суміші ідеальних газів
- •Запитання до самоконтролю і повторення
- •Приклади розв'язування задач
- •Розв'язання
- •Розв'язання
- •Розв'язання
- •Задачі для самостійного розв'язування
- •5 Водяна пара
- •Запитання для самоконтролю і повторения
- •Приклади розв'язування задач
- •Розв'язання
- •Розв'язання
- •Розв'язання
- •Розв'язання
- •Задачі для самостійного розв'язування
- •6 Цикли теплових та холодильних машин
- •1. Двигуни виутрішнього згоряння (двз)
- •Цикл Отто:
- •Цикл Дизеля:
- •Цикл Тринклсра:
- •2. Газотурбіна установка (гту)
- •3. Повітряна холодильна установка
- •Приклад розв'язання задач
- •Розв'язання
- •Задачі для самостійного розв'язування
- •7 Теплопередача
- •Запитання для самоконтролю і повторення
- •Прикладн розв'язування задач
- •Розв'язання
- •Розв'язання
- •Розв'язання
- •Розв'язання
- •Розв'язання
- •Розв'язання
- •Розв'язання
- •Розв'язання
- •Задачи для самостійного розв'язування
- •Додатки
Розв'язання
З рівняння політропного процесу
впливає:
або
,
звідси
;
v1 знайдемо з рівняння стану:
,
де
Дж/(кг
К).
м3/кг;
м3/кг;
К.
Робота:
кДж/кг.
Теплота:
.
Дж/кг
К;
;
кДж/кг.
Зміна внутрішньої енергії:
кДж/кг.
Зміна ентропії:
кДж/(кг
К).
Задачі для самостійного розв'язування
Задача 1
1 кг кисню має параметри Р1 = 20 МПа та t1= 300 ° С. Наприкінці політропного процесу параметри робочого тіла приймають значення: Р2 = 15 МПа та t2 = 57 °С. Визначити питомі кількості теплоти, роботи та зміну внутрішньої енергії кисню, що мали місце при завершенні процесу. Зобразити графічно процес у рv- та Тs- діаграмах.
Задача 2.
Початковий стан 10 кг кисню характеризується параметрами: Р1 = 15 МПа та t1 = 200 °С. У процесі 1 - 2 відбувається політропне змінення стану до Р2 = 1, 5 МПа та t2 = 67 °С , а в процесі 2-3 кисень ізохорно стискається до тиску Рз = 6 МПа. Визначити сумарну кількість теплоти, роботи та зміну внутрішньої енергії кисню, що мали місце при звершенні процесів 1-2 та 2-3. Зобразити процеси у рv- та Тs- даграмах.
Задача 3
Початковий стан 1 кг повітря задано параметрами Р1 = 10 МПа та t1 = 147 °С. Повітря спочатку розширюється ізотермічно до тиску Р2 = 1, 0 МПа, а потім стискуеться ізобарно до питомого об'ему v3 = 0, 07 м3/ кг. Визначити сумарну кількіть теплоти, роботу та змінення внутрішньої енергії повітря. Зобразити графічно процеси в рv- та Тs- діаграмах.
Задача 4,
Початковий стан 10 кг повітря характеризується параметрами Р1 = 1 МПа, t1 = 27 °С. У процесі 1-2 відбуваеться адіабатичне стиснення повітря до тиску Р2 = 10 МПа. Потім у процесі 2-3 - ізотермічне розширення його до початкового об'ему. Знайти початковий та кінцевий об'єм повітря, сумарну кількість теплоти, роботи та зміну внутрішньої енергії повітря, що мали місце при завершенні процесів 1-2 та 2-3. Прийняти R= 287 Дж/(кг К), n = 1,4. Зобразити графічно процеси у рv- та Тs- діаграмах.
Задача 5
1 кг вуглекислого газу має параметри Р1= 1 МПа та v1 = 0,2 м3/кг. Над газом виконуєгься питома робота I =300 кДж/кг та підводиться питома кількість теплоти q=200 кДж/кг. Знайти параметри газу наприкінці процесу та показник політропи процесу. Зобразити процес у рv- та Тs- діаграмах.
4 Основні закони суміші ідеальних газів
Суміші ідеальних газів підкоряються тим же законам, що й окремі ідеальні гази. Згідно з законом Дальтона, тиск суміші ідеальних газів дорівнює сумі тисків, які створюються окремими газами незалежно від присутності інших:
.
(42)
Згідно з законом Амага, об'єм суміші ідеальних газів дорівнює сумі парціальних об'ємів кожного компонента суміші:
.
(43)
Склад суміші визначається
масовими частками:
,
(44)
або об’ємними частками:
,
(45)
де mi- маса i-го компонента суміші, mсм -маса суміші,
vi – об’єм і-го компонента суміші, vсм – об’єм суміші.
Для встановлення зв'язку масових часток і об'емних користуються співвідношенням:
,
Де молекулярна маса суміші:
,
(46)
µі - молекулярна маса компонента суміші.
Питома газова стала суміші визначається як:
,
(47)
або
,
(48)
де R - питома газова стала 1-го компонента сумііші,
Rµ - 8,314 Дж/моль К - універсальна газова стала. Таким чином, рівняння стану суміші ідеальних газів має вигляд
.
(49)