- •Колебания и волны введение
- •§ 2. Основные характеристики волн
- •§ 3. Уравнение волны
- •§ 4. Звук
- •§ 5. Поток энергии в волновых процессах
- •§ 6. Эффект Допплера.
- •§7. Стоячие волны
- •Глава 2 электромагнитные волны § 1. Волновое уравнение
- •§ 2. Свойства электромагнитных волн
- •§ 3. Энергия и импульс электромагнитного поля
- •Глава 3 световые волны § 1. Электромагнитная природа света
- •§ 2. Естественный свет
- •§ 3. Волновой пакет
- •§ 4. Законы отражения и преломления света
- •§5. Геометрическая оптика
- •§ 6. Увеличение
- •§ 7. Центрированная оптическая система
- •§ 8. Преломление в линзе. Общая формула линзы
- •§ 9. Глаз как оптическая система
- •§ 4. Фотометрические понятия и единицы
- •Глава IV
- •§ 1. Понятие о когерентности
- •§ 2. Интерференция волн
- •§ 3. Осуществление когерентных волн в оптике
- •§ 4. Цвета тонких пластинок
- •§ 5. Кольца Ньютона
- •§ 6. Интерференция в плоскопараллельных пластинках. Полосы равного наклона
- •§ 7. Интерферометр Майкельсона
- •§ 8. Интерференция немонохроматических световых пучков
- •Глава V дифракция света
- •§ 1. Принцип Гюйгенса — Френеля
- •§ 2. Зонная пластинка
- •§ 3. Графическое вычисление результирующей амплитуды
- •§ 4. Дифракция Френеля на круглом отверстии
- •§ 5. Дифракция Фраунгфера от щели
- •§ 6. Дифракция на двух щелях
- •§ 7. Дифракционная решетка
- •Глава VI
- •§ 4. Волновые поверхности в одноосном кристалле.
- •§ 5. Поляризационные приборы.
- •§ 6. Интерференция поляризованных лучей. Эллиптическая и круговая поляризация.
- •§ 7. Кристаллическая пластинка между николями.
- •§ 8. Искусственное двойное лучепреломление.
- •§ 9. Двойное лучепреломление в электрическом поле.
- •§ 10. Вращение плоскости поляризации.
- •§ 11. Магнитное вращение плоскости поляризации.
- •Глава VII
- •§ 1. Дисперсия света. Методы наблюдения и результаты
- •§ 2. Основы теории дисперсии
- •§ 3. Поглощение (абсорбция) света
- •§ 4. Ширина спектральных линий и затухание излучения
- •§ 5. Прохождение света через оптически неоднородную среду
- •Глава 8 Нелинейная оптика
- •§ 1. Интенсивность света в оптике
- •1.1 Частота и поляризация – основные характеристики света в долазерной оптике
- •1.2 Роль интенсивности света
- •§2. Взаимодействие сильного светового поля со средой
- •2.1 Линейный атомный осциллятор
- •2.2 Нелинейный атомный осциллятор. Нелинейные восприимчивости
- •2.3. Причины нелинейных оптических эффектов
- •§3. Оптические переходы
- •3.1 Фотоны друг с другом непосредственно не взаимодействуют
- •3.2 Однофотонные и многофотонные переходы
- •3.3. Виртуальный уровень.
- •3.4. Каким образом микрообъект играет роль «посредника» в процессах преобразования «света» в «свет»?
- •3.5. Процесс, описывающий генерацию второй гармоники.
- •§4. Преобразование одной световой волны в другую световую волну
- •4.1. Некогерентные и когерентные процессы преобразования света в свет
- •4.2. Условие волнового синхронизма на примере генерации второй гармоники.
- •4.3. Классическое объяснение явления генерации второй гармоники.
- •Глава I
- •§ 1. Тепловое излучение. Закон Кирхгофа
- •§ 2. Законы излучения абсолютно черного тела
- •§ 1. Специальная теория относительности.
- •§ 2. Преобразования Лоренца.
- •§ 2. Следствия из преобразований теории относительности.
- •§ 2. Механика теории относительности.
- •§ 11. Эффект Комптона
- •§ 13. Модель атома Томсона
- •§ 14. Опыты по рассеянию α-частиц. Ядерная модель атома
- •§ 15. Постулаты Бора. Опыт Франка и Герца
- •§ 17. Элементарная боровская теория водородного атома
§ 2. Механика теории относительности.
Рассуждения, приведенные выше, показывают, что оптические (и электромагнитные) явления подтверждают кинематику теории относительности, вытекающую из преобразований Лоренца. Естественно ожидать, что эти кинематические законы, дающие пространственно-временную характеристику явлений, должны быть одинаковыми для всех явлений природы. Поскольку преобразования Галилея, относительно которых инвариантны законы ньютоновской механики, являются предельными выражениями преобразований Лоренца, при стремлении отношения υ/'с к нулю, можно думать, что уравнения механики Ньютона также являются предельными уравнениями некоторых более общих уравнений, инвариантных по отношению к преобразованиям Лоренца, как того требует теория относительности.
Найти вид уравнений механики теории относительности можно, внеся в уравнения Ньютона такие изменения, которые делают их инвариантными по отношению к преобразованиям Лоренца.
Напишем уравнение механики Ньютона в векторной форме:
(mv)
= f
(1)
В механике Ньютона масса т считается величиной постоянной, независящей от состояния движения. Как можно показать, это предположение не совместимо с требованием инвариантности уравнений по отношению к преобразованию Лоренца. Требование, чтобы в механике теории относительности, как и в механике Ньютона, для изолированной системы тел выполнялся в любой системе закон сохранения количества движения и учет законов преобразования скоростей при переходе из одной системы в другую, приводит к выводу, что масса тела должна иметь разные значения в разных системах, находящихся в относительном движении. Закон преобразования масс при этом окажется следующим:
m = m0 / (2)
Здесь т0 есть значение массы, измеренной в системе, в которой она покоится, а т — значение той же массы, измеренной в системе, движущейся относительно первой с постоянной скоростью υ. Уравнения механики окажутся инвариантными по отношению к преобразованиям Лоренца, если в формуле (1) под массой т подразумевать величину, преобразующуюся по закону (2). Таким образом, уравнения механики теории относительности принимают форму:
v)
= f
(3)
Очевидно, что эти уравнения, отличающиеся от уравнений Ньютона, должны приводить к иным следствиям, чем уравнения классической механики. Проверка этих следствий на опыте является проверкой и самих уравнений.
Как известно, в классической механике уравнение движения может быть записано в виде: p = f, где , р — количество движения. Сравнивая его с (3), видим, что в механике теории относительности роль количества движения играет величина:
p=m0v/ =mv (4)
Исключительно важным следствием механики теории относительности является вытекающая из нее связь между энергией и массой. Установим это соотношение, основываясь на формуле (3). В классической механике изменение кинетической энергии материальной точки определяется по работе, совершенной силами, приложенными к точке. Проведем соответственное рассмотрение для уравнения (3). Элементарная работа dА силы f равна скалярному произведению силы на перемещение dr точки:
dA=f · dr.
Эта величина должна давать приращение кинетической энергии точки:
dA =dEk .
На основании формулы (3) имеем:
dEk
= dA =
v)
· dr
Выполняя дифференцирование, получим:
или, так как dr/dt равно скорости v, то
Следовательно:
С другой стороны, по формуле (2) находим:
Из сопоставления двух последних формул получаем следующую связь между dEk и dт:
dEk = c2dm (5)
Изменение энергии пропорционально изменению массы, причем коэффициентом пропорциональности является квадрат скорости света. Это положение естественно обобщить, считая что между энергией Е и массой т имеется общая связь, выражаемая соотношением:
Е = тс2 (5а)
Масса и энергия являются характеристиками качественно различных свойств тех видов материи, которые рассматривает физика. Масса характеризует инерционные свойства материи (второй закон Ньютона) и свойства, проявляющиеся в явлениях всемирного тяготения. Энергия является величиной, изменение которой определяет совершаемые системой работы. Вытекающие из теории относительности соотношения (5) и (5а) указывают, что между этими двумя характеристиками имеет место связь: изменение одной из них ведет к эквивалентному изменению другой. Изменение массы системы может произойти не только за счет обмена с внешними телами веществом (атомами, молекулами), но и за счет передачи системе энергии. Например, если системе передается количество тепла ΔQ, в результате чего ее энергия возрастает на величину ΔЕ, то в соответствии с соотношением (5) одновременно возрастает и масса системы на величину Δm=ΔE/c2.
Другой пример: если в результате излучения света энергия системы убывает на ΔЕ, то одновременно уменьшается ее масса на величину Δm=ΔE/c2. Для замкнутой системы сохраняется ее масса и сохраняется ее полная энергия.
Ввиду большого численного значения скорости света с в пустоте, определенному численному изменению энергии ΔЕ соответствует малое изменение массы Δm. При увеличении энергии системы Е на 1 дж ее масса увеличивается лишь на Δm ≈ 1,1 • 10-14 г. Поэтому при обычных изменениях энергии тел изменение их массы настолько мало, что оно не может быть непосредственно замечено. Однако современная физика имеет возможность проверить соотношение между энергией и массой, благодаря огромным количествам энергии, освобождаемым при ядерных превращениях.
Из соотношения между энергией и массой вытекает релятивистская форма связи между энергией и количеством движения. Подставив в (5а) вместо т его значение по (2), получим:
возводя это равенство в квадрат и производя алгебраические преобразования, найдем:
или на основании (4):
