
- •Электрические и электронные аппараты
- •Аппараты электроприводов и распределительных устройств низкого напряжения
- •1. Представление аппарата элементом системы управления
- •1.1. Электроаппарат в системе управления
- •1.2. Узлы с дистанционно управляемыми аппаратами, комплектные аппараты
- •1.3. Особенности преобразования входных воздействий аппаратами
- •1.4. Основные требования, предъявляемые к аппаратам
- •1.5. Общие условия выбора электроаппарата для системы управления
- •Где Uуст.Ном - номинальное напряжение электроустановки;
- •Iн. Макс Iап ном ,
- •2. Контакторы
- •2.1. Общие сведения
- •2.2. Классификация, основные технические данные и категории применения контакторов
- •2.3. Особенности контакторов постоянного тока и контакторов переменного тока
- •2.4. Разновидности электромагнитных контакторов
- •2.5. Бесконтактные коммутаторы силовых цепей
- •2.6. Тиристорные коммутаторы трехфазных цепей асинхронных двигателей
- •3. Пускатели
- •3.1. Общие сведения
- •3.2. Магнитные пускатели
- •3.3. Тиристорные пускатели
- •4. Реле
- •4.1. Общие сведения
- •4.2. Электромагнитные реле тока и напряжения
- •4.3. Контактные реле времени
- •4.4. Полупроводниковые и комбинированные реле
- •4.5. Оптоэлектронные твердотельные реле
- •4.6. Реле, контролирующие неэлектрические параметры
- •5. Аппараты защиты
- •5.1. Общие сведения
- •5.2. Электромагнитные аппараты защиты
- •5.3. Электротепловые реле защиты
- •5.4. Автоматические воздушные выключатели
- •5.5. Выключатели дифференциального тока
- •5.6. Плавкие предохранители
- •6. Командоаппараты и другие аппараты ручного управления
- •6.1. Общие сведения
- •6.2. Кнопки управления и кнопочные посты
- •6.3. Универсальные переключатели, командоконтроллеры
- •6.4. Путевые и конечные выключатели
- •6.5. Контроллеры
- •6.6. Реостаты
- •6.7. Рубильники и ререключатели
- •7.2. Электромагнитные тормозы
- •7.3. Электромагнитные фрикционные муфты
- •7..4. Электромагнитные порошковые муфты
- •8. Измерительные преобразователи и электрические датчики
- •8.1. Общие сведения
- •8.2. Резистивные преобразователи и датчики положения
- •8.3. Индуктивные преобразователи и датчики положения
- •8.4. Емкостные преобразователи перемещения
- •8.5. Сельсины
- •8.6. Сельсинные системы
- •8.7. Вращающиеся трансформаторы
- •8.8. Кодовые датчики положения
- •8.9. Датчики на основе измерительных преобразователей положения
- •8.10. Генераторные преобразователи скорости вращения
- •8.11. Цифровые датчики скорости
- •8.12. Датчики тока и датчики напряжения
- •Литература
- •Часть 2
- •198035, Санкт-Петербург, ул. Двинская, 5/7
- •198035, Санкт-Петербург, Межевой канал, 2
8.12. Датчики тока и датчики напряжения
Датчики тока и датчики напряжения осуществляют преобразование текущих значений тока и, соответственно, напряжения (в контролируемой цепи) в электрический сигнал, у которого носителем информации обычно является напряжение. В датчиках может предусматриваться гальваническая развязка выходной (слаботочной) цепи от входной (силовой) цепи, а также нормирование сигнала (приведение его значений к определенной области, например, к напряжению из диапазона 0…10 В). В состав такого датчика входят следующие функциональные части: чувствительный элемент (первичный измерительный преобразователь), устройство гальванической развязки (потенциальный разделитель), усилительные устройства. Обобщенная структурная схема датчика тока и датчика напряжения показана на рис. 8.22.
На схеме обозначены:
ЧЭ – чувствительный элемент (первичный измерительный преобразователь – шунт, трансформатор тока в датчиках тока; делитель напряжения, измерительный трансформатор напряжения в датчиках напряжения);
ВУ – входной усилитель;
ПР – потенциальный разделитель;
НУ – нормирующий усилитель;
ЭЦ – контролируемая датчиком электрическая цепь;
ПИ – приемник информации (например регулятор системы управления автоматизированного электропривода).
Подключение чувствительных элементов к электрической цепи с нагрузкой (RH, ZH) показано на рис. 8.23.
Шунт (RШ на рис. 8.23а) представляет собой резистор с двумя токовыми и двумя потенциальными зажимами. С помощью токовых зажимов шунт подключают в разрыв (рассечку) контролируемой цепи. Напряжение, пропорциональное току контролируемой цепи, с потенциальных зажимов шунта подается на входной усилитель (ВУ) датчика тока и усиливается им в 100…200 раз. Линейная зависимость напряжения от тока обеспечивается при большом входном сопротивлении ВУ.
Классы точности шунтов: 0,02; 0,05; 0,1; 0,2; 05. Номинальные токи в пределах от 0,5 А до 7500 А. Номинальное падение напряжения на шунте составляет 75 мВ (это напряжение между потенциальными зажимами, когда по шунту протекает ток, равный номинальному току шунта).
Делитель напряжения в виде последовательного соединения резисторов R1 и R2 (рис. 8.23а) подключают под полное контролируемое напряжение. Выходное напряжение делителя, пропорциональное контролируемому напряжению, снимается с резистора R2. ВУ исполняет роль согласующего элемента, обладая высоким входным сопротивлением.
Измерительный трансформатор переменного тока (ТА) применяют вместо шунта (рис. 8.23б), что позволяет: уменьшить потери энергии, возникающие в процессе ее преобразования; реализовать гальваническую развязку между цепями; повысить безопасность эксплуатации; уменьшить габариты и массу датчика. Режим работы выбирают близким к режиму короткого замыкания (разрыв вторичной цепи приводит к аварийному режиму). Усилитель (ВУ) с малым входным сопротивлением подключают к вторичной цепи трансформатора тока через выпрямитель.
Трансформаторы тока изготовляют на номинальные первичные токи в диапазоне от 0,1 А до 40000 А. Вторичные номинальные токи могут иметь значения 1,2; 2,5; 5 А. Классы точности: 0,2; 0,5; 1; 3.
Измерительный трансформатор напряжения (TV на рис. 8.23б) работает в режиме близком к режиму холостого хода. Он понижает контролируемое переменное напряжение и гальванически развязывает электрические цепи. Сигнал, снимаемый с вторичной обмотки трансформатора, через выпрямитель подается на усилитель (ВУ) с большим входным сопротивлением.
Характеристики управления рассмотренных чувствительных элементов считают линейными в практических приложениях. Зависимость выходной переменной u1 от входной переменной u определяют через номинальный коэффициент преобразования kЧЭном=u1ном/uном , где «ном» означает номинальное значение соответствующего параметра. Тогда
u1= kЧЭном· u .
Измерительный трансформатор постоянного тока, выполненный на основе магнитного усилителя (см. [1] п. 5.3), применяют для измерения постоянных токов свыше 5000 А. Использование шунтов в таких случаях нецелесообразно, так как шунты получаются весьма громоздкими и дорогими.
Обмотка управления wy магнитного усилителя А подключается в разрыв контролируемой цепи, по которой протекает постоянный ток I (рис. 8.24). Она состоит из одного витка провода. Рабочие обмотки wp получают питание от источника переменного напряжения ~U.
Среднее значение напряжения на выходе выпрямителя UZ линейно зависит от тока I при I<Um/[(wy/wp)RH] , где Um - амплитудное значение напряжения ~U; RH - входное сопротивление усилителя ВУ (см. [1] п. 5.3).
Потенциальный разделитель (ПР на рис. 8.22) представляет собой последовательное соединение модулятора, трансформатора и демодулятора.
Модулятор – это узел ПР, который осуществляет преобразование медленно изменяющегося сигнала u2 постоянного тока (u2 выделен на рис. 8.22) в сигнал uM переменного тока (не обязательно синусоидального), имеющего амплитуду, пропорциональную u2. Этот процесс называют амплитудной модуляцией переменного тока (несущей) сигналом (u2).
Для выделения передаваемого в ПР сигнала u2 из модулированного переменного напряжения uM необходимо преобразовать это напряжение в напряжение постоянного тока. Эту операцию называют демодуляцией.
Демодулятор – узел ПР, который осуществляет демодуляцию сигнала переменного тока. В радиотехнике операция выделения моделирующего сигнала обычно называется детектированием и в соответствии с этим устройство, выполняющее эту операцию, называют детектором. Для автоматических систем демодулятор называют также фазовым дискриминатором.
Упрощенная электрическая схема потенциального разделителя с кольцевым модулятором и амплитудным детектором показана на рис. 8.25а.
Принцип работы кольцевого модулятора основан на свойстве диодов пропускать ток в одном направлении и не пропускать его в противоположном направлении. Диоды VD1, VD2, VD3, VD4 кольцевого модулятора включены в плечи моста. Применяются диоды с одинаковыми вольтамперными характеристиками (ВАХ). На рис. 8.25б ВАХ диода представлена в виде кусочно-линейной зависимости тока IVD от напряжения UVD (для номинального режима работы модулятора). Вправо от начала координат ВАХ откладывается прямое напряжение на диоде, влево - обратное.
Режим работы модулятора определяется переменным коммутирующим напряжением uк, которое приложено между точками a и b моста от вторичной обмотки трансформатора Т1. В полупериоде коммутирующего напряжения, в котором его плюс приложен к точке а, коммутирующие токи идут в направлениях:
от точки a через диоды VD1, VD2 к точке b;
от точки a через диод VD1 с точке с и далее через верхнюю секцию обмотки трансформатора Т2 (сверху вниз), источник входного сигнала u2 к среднему выводу обмотки трансформатора Т1;
от среднего вывода обмотки трансформатора Т1 через источник сигнала u2, верхнюю секцию трансформатора Т2 (снизу вверх), диод VD2 к токе b.
По верхней секции обмотки трансформатора Т2 один коммутирующий ток, обозначим его i↓, протекает сверху вниз, другой i↑ – снизу вверх. По нижней секции обмотки Т2 коммутирующие токи не протекают. При смене полярности напряжения uк, т.е. в полупериоде, в котором плюс uк приложен к точке b, коммутирующие токи i↑, i↓ будут протекать по нижней секции обмотки трансформатора Т2. Результирующий ток iS = i↓ - i↑ равен нулю.
При u2=0 имеем только i↑ = i↓ . Следовательно, тока во входной обмотке трансформатора Т2 нет, напряжение uD на выходе модулятора и, соответственно, на входе амплитудного детектора равно нулю.
Если u2≠0, то потенциалы средних выводов обмоток трансформаторов Т1 и Т2 будут различаться. Следовательно, по одной секции обмотки Т2 в течение полупериода напряжения uк будет протекать ток, созданный источником сигнала u2. В следующем полупериоде ток будет протекать по другой секции и т.д. В результате на выходе модулятора формируется переменное напряжение uD , амплитуда которого пропорциональна величине напряжения u2. Амплитудная модуляция несущей uк сигналом u2 иллюстрируется левой и средней диаграммами на рис. 8.25в.
Демодулятор (в рассматриваемом случае амплитудный детектор) состоит из однополупериодного выпрямителя, выполненного на диоде VD5, и емкостного С-фильтра (см. рис. 8.25а). Получая на входе переменное напряжение uD, амплитуда которого изменяется в соответствии с сигналом u2, детектор выделяет огибающую этого напряжения (правая диаграмма на рис. 8.25в).
Амплитудный детектор имеет недостаток – он не реагирует на полярность напряжения u2. Этот недостаток может быть устранен, если в качестве демодулятора применить рассмотренный кольцевой модулятор, поменяв местами роли входа и выхода.