Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
УП_autor.docx
Скачиваний:
6
Добавлен:
01.04.2025
Размер:
3.86 Mб
Скачать

10.2. Ошибки проверки гипотез

При проверке гипотезы возможны два типа ошибок.

  • Во-первых, гипотеза может быть отклонена, хотя фактически она верна. Такая ошибка называется ошибкой первого рода.

  • Во-вторых, гипотеза может быть принята, хотя фактически она неверна. Такая ошибка называется ошибкой второго рода.

Проиллюстрируем эти понятия графически (рис. 10.3).

Рис. 10.3. Определение ошибки первого и второго рода при проверке гипотез

Из рисунка видно, что ошибка первого рода происходит в том случае, когда при справедливости гипотезы значение попадает в область ее отклонения (критическую область). Следовательно, вероятность ошибки первого рода равна -уровню значимости критерия.

Для определения вероятности ошибки второго рода предположим, к примеру, что истинный параметр равен либо , либо (см. рис. 10.3). Если гипотеза состоит в том, что , тогда как на самом деле , то вероятность того, что попадает в область принятия гипотезы, заключенную между и равна . Следовательно, вероятность ошибки второго рода равна при выявлении отклонения величиной от гипотетического значения .

Вероятность называется мощностью критерия.

Следует отметить, что вероятности ошибок первого и второго рода вычисляются при разных предположениях о распределении (если верна гипотеза и если верна гипотеза ), так что никаких раз и навсегда фиксированных соотношений (например , независимо от вида гипотезы и вида критерия) между ними нет. Таким образом, при фиксированном объеме выборки мы можем сколь угодно уменьшать ошибку первого рода, уменьшая уровень значимости . При этом, естественно, возрастает вероятность ошибки второго рода (уменьшается мощность критерия). Единственный способ одновременно уменьшить ошибки первого и второго рода и – увеличить размер выборки . Именно такие соображения лежат в основе выбора нужного размера выборки в статистических экспериментах.

ПРИМЕР 1: Построение критерия проверки гипотез

Предположим, что среднее значение СВ равно , также предположим, что дисперсия известна и равна . Необходимо найти объем выборки , позволяющий построить критерий проверки гипотезы с 5%-уровнем значимости и 5%-ошибкой второго рода для выявления 10%-отклонений от гипотетического значения. Построим также область принятия гипотезы .

РЕШЕНИЕ: Выборочное среднее , определяемое формулой (8.6), является несмещенной оценкой . Соответствующее выборочное распределение определяется из соотношения (9.7):

(10.1)

где имеет распределение . Верхняя и нижняя границы области принятия гипотезы соответственно равны:

(10.2)

Если теперь истинное среднее значение равно , то с вероятностью произойдет ошибка второго рода, если выборочное среднее окажется меньше (левее) верхней границы и больше (правее) нижней. В терминах выборочного распределения со средним или для верхней и нижней границ (см. рис. 10.3):

(10.3)

Итак, справедливы следующие равенства:

(10.4)

Вспомним, что благодаря симметричности распределения справедливы равенства:

(10.5)

Теперь из (10.4) с учетом (10.5) найдем требуемый объем выборки:

(10.6)

Для конкретных значений данного примера: Подставим эти значения в (10.6) и получим значение необходимого объема выборки . Таким образом, объем выборки должен быть равен или больше пятидесяти двух. Область принятия гипотезы определяется соответствующими границами (верхней и нижней (10.2)):