Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
УП_autor.docx
Скачиваний:
6
Добавлен:
01.04.2025
Размер:
3.86 Mб
Скачать

Глава 10. Статистические критерии

Прежде, чем перейти к рассмотрению понятия статистической гипотезы, сформулируем так называемый принцип практической уверенности, лежащий в основе применения выводов и рекомендаций, полученных с помощью теории вероятностей и математической статистики:

Если вероятность события в данном испытании очень мала, то при однократном испытании можно быть уверенным в том, что событие не произойдет, и в практической деятельности вести себя так, как будто событие вообще невозможно.

Вопрос о том, насколько малой должна быть вероятность события , чтобы его можно было считать практически невозможным, выходит за рамки математической теории и решается в каждом отдельном случае с учетом важности последствий, вытекающих из наступления события . В ряде случаев можно пренебречь событиями, вероятность которых меньше 0.05, а в других, когда речь идет, например, о разрушении сооружений, гибели судна и т.п. нельзя пренебрегать событиями, которые могут появиться с вероятностью, равной 0.001.

Статистическим критерием (или просто критерием) называют случайную величину , которая служит для проверки гипотезы.

Критерии значимости (критерии проверки гипотез, иногда – просто тесты) – это простейшие, но наиболее широко используемые статистические средства.

Критерий значимости дает возможность статистику найти разумный ответ на вопрос, подобный следующим:

  • Сталь, произведенная разными методами, имеет неодинаковые пределы прочности. "Указывает ли это на то, что производимая разными методами сталь имеет различную прочность, или же выявленное различие можно объяснить выборочными флуктуациями?"

  • "Превосходит ли по эффективности одно противогриппозное средство другое?"

  • "Способствует ли отказ от курения снижению вероятности раковых заболеваний?"

  • "Превосходит ли по воздействию одно удобрение другое при выращивании овощей?"

10.1. Проверка гипотез

Статистической – называют гипотезу о виде неизвестного распределения или о параметрах известных распределений.

Рассмотрим простейший вид статистической процедуры, называемой проверкой гипотез. Пусть дана некоторая оценка , построенная по выборке из независимых наблюдений СВ . Предположим, что есть основания считать истинное значение оцениваемого параметра равным . Однако даже если истинное значение параметра равно , выборочное значение , вероятно, не будет в точности равняться , из-за выборочной изменчивости, присущей . Поэтому сформулируем следующий вопрос. Если предположить, что , то при каком отклонении от эта гипотеза должна быть отвергнута как несостоятельная? На этот вопрос ответ можно дать в статистических терминах, вычислив вероятность любого значимого отклонения от по выборочному распределению . Если вероятность такого отличия мала, то отличие следует считать значимым, и гипотеза должна быть отвергнута. Если же вероятность такого отличия велика, то отклонение следует приписать естественной статистической изменчивости, и гипотеза может быть принята.

Проиллюстрируем общий подход, предположив, что выборочное значение , являющееся оценкой параметра , имеет плотность вероятности нормального распределения . Теперь, если гипотеза верна, то должна иметь среднее значение (см. рис. 10.1).

Вероятность , использованная при испытании гипотез, называется уровнем значимости критерия.

Вероятность того, что окажется меньше нижней границы , равна вероятности того, что превзойдет верхнюю границу и каждая из них равна . Следовательно, вероятность того, что окажется вне интервала, заключенного между этими границами равна . Область значений , при которых гипотеза принимается, называется областью принятия гипотезы.

Нулевой (основной) называют выдвинутую гипотезу . В данном примере .

Область значений , при которых гипотеза должна быть отвергнута, называется областью отклонения гипотезы или критической областью.

Конкурирующей (альтернативной) называют гипотезу, которая противоречит нулевой. В данном примере .

Рис.10.1. Область принятия и отклонения гипотезы (двусторонний критерий)

Рассмотренный нами простой критерий испытания гипотез называется двусторонним критерием, так как, когда гипотеза неверна, значение может быть либо больше, либо меньше .

В ряде случаев достаточно бывает односторонних критериев (рис.10.2). Например, пусть основная гипотеза . Тогда альтернативная гипотеза: . Следовательно, в критерии должна использоваться только нижняя (левая) граница , определяемая по плотности вероятности .

Рис.10.2. Область принятия и отклонения гипотезы (односторонний критерий)