
- •Лекція 1 Тема: Основи біомеханіки та біоакустики
- •Елементи механіки.
- •Закони механіки і тіло людини.
- •Механічні властивості кісток.
- •М’язи. Робота м’язів.
- •Біофізика зовнішнього дихання.
- •Механічні властивості в легенях.
- •Тканини кровоносних судин
- •Звукові хвилі.
- •Характеристика слухового відчуття.
- •Аудіометрія.
- •Звукові методи діагностики.
- •Ультразвук.
- •Інфразвук. Вібрації.
- •Лекція 2
- •Основні поняття реології.
- •Ньютонівські і неньютонівські рідини. Кров.
- •Методи визначення коефіцієнта в'язкості.
- •Основи гемодинаміки.
- •Умова неперервності струмини.
- •Рух рідини у трубках із пружними стінками.
- •Судинна система
- •Основні гемодинамічні показники.
- •Біофізика кровообігу.
- •Лекція 3 Тема: Електричні властивості клітин, тканин та деякі методи реєстрації медичної і біологічної інформації. Електропровідність біологічних тканин і рідин.
- •Електрографія. Фізичні основи електрокардіографії.
- •Імпеданс біологічних тканин.
- •Предмет загальної та медичної електроніки
- •Основні групи електронних медичних приладів та апаратів
- •Надійність медичної апаратури
- •Загальна схема зняття, передачі та реєстрації медико-біологічної інформації
- •Медична електронна апаратура для реєстрації біопотенціалів серця
- •Біопотенціали
- •Біопотенціали дії
- •Проведення біопотенціалів по нервових і м'язових волокнах
- •Електрокардіографія
- •Електрокардіограма
- •Апаратура для реєстрації та спостереження електричної активності серцевої діяльності
- •Блок-схема електрокардіографа
- •Перспективи розвитку апаратури і методів електрокардіографії
- •Практичні проблеми запису екг. Артефакти
- •Основи електроплетизмографїї
- •Біофізичні основи методу електроплетизмографії
- •Лекція 4 Тема: Фізичні онови методів електролікування
- •Науково-методичне обґрунтування:
- •Виховні цілі:
- •Між предметна інтеграція.
- •План та організаційна структура.
- •Зміст лекції.
- •Постійний електричний струм. Гальванотерапія.
- •Імпульсні струми
- •Постійне електричне поле високої напруги
- •Струми вч, увч, нвч.
- •Магнітотерапія
- •Матеріали активізації студентів.
- •Матеріали для самопідготовки.
- •Медицина і фізика: елементи фахової компетентності
- •Фрейм додаткової інформації
- •Лекція 5 Тема: Елементи квантової механіки. Індуковане випромінювання. Лазери. Індуковане випромінювання
- •Рівноважна та інверсна заселеність
- •Будова та принцип дії лазера
- •Застосування лазерів у медицині.
- •Лекція 6 Тема: Теплове випромінювання біологічних об’єктів. Термографія.
- •Закон Кірхгофа
- •Закон випромінювання Планка
- •Закон Стефана—Больцмана
- •Закон зміщення Віна
- •Випромінювання Сонця
- •Інфрачервоне випромінювання
- •Ультрафіолетове випромінювання
- •Лекція 7
- •Оптичні методи дослідження медико-біологічних систем.
- •Історія відкриття явища просвітлення оптики, праці о. Смакули
- •Інші застосування явища інтерференції світла
- •Голографія та її застосування в медицині
- •Колориметрія.
- •Нефелометрія
- •Рефрактометрія
- •Волоконна оптика. Ендоскопія
- •Поляриметрія
- •Поляризаційний мікроскоп
- •Люмінесцентний мікроскоп
- •Око як оптична система
- •Формування зображення предметів в оці
- •Акомодація
- •Механізм зорового сприйняття
- •Денне та сутінкове бачення
- •Чутливість ока
- •Поле зору
- •Кольорове бачення
- •Недоліки ока
- •Лекція 8 Тема: Рентгенівське випромінювання. Методи рентгенівської діагностики в терапії. Історія відкриття рентгенівських променів, праці і. Пулюя
- •Природа рентгенівських променів і методи їх отримання
- •Гальмівне рентгенівське випромінювання
- •Характеристичне рентгенівське випромінювання, його природа. Закон Мозлі
- •Застосування рентгенівського випромівання в медицині
- •Методи рентгенодіагностики
- •Рентгеноскопія
- •Флюорографія (рентгенофлюорографія)
- •Рентгенографія
- •Е лектрорентгенографія
- •Підсилювачі рентгенівського зображення
- •Рентгенотелебачення
- •Рентгенотерапія
- •Рентгенівський структурний аналіз в медико-біологічних дослідженнях
- •Променеві навантаження на медичний персонал при рентгенодіагностичних дослідженнях
- •Деякі факти реакції крові на опромінення
- •Опромінення малими дозами великих груп людей
- •Латентний період - час виявлення в організмі порушень, викликаних радіацією
- •Проблеми ризику, пов'язаного із радіаційною дією
- •Комп'ютерна томографія
- •Лекція 9
- •Елементи фізики атомного ядра
- •Радіоактивність
- •Закон радіоактивного розпаду. Активність
- •Види радіоактивного розпаду
- •Біологічна дія іонізуючого випромінювання
- •Дозиметрія іонізуючого випромінювання
- •Використання ядерних випромінювань у медицині
Ультразвук.
Ультразвук — це механічні коливання з частотою понад 20 кГц. Ультразвукові коливання поширюються в середовищі зі сталою швидкістю, рівною швидкості звуку. В основі генерації ультразвуку лежить зворотний п'єзоелектричний ефект і магнітострикція.
Зворотний п'єзоелектричний ефект зумовлений механічною деформацією пластинки з п'єзокристалу за впливу прикладеної до її поверхні різниці потенціалів. До електродів, розмішених на поверхнях пластинки з кварцу або титанату барію, підводять змінне електричне поле. Відбувається деформація пластинки з частотою 90х108 Гц. Отже, ця пластинка є випромінювачем УЗ-хвиль.
Магнітострикція — це деформація феромагнетика за впливу магнітного поля. Якщо в змінне магнітне поле помістити феромагнетик, то його деформація зумовить поширення в середовищі пружної УЗ-хвилі.
Реєстрація інтенсивності УЗ-хвилі, що пройшла через тканини й органи з різними коефіцієнтами послаблення, дає змогу визначити їх місце розташування і розміри. На цьому ґрунтується "тіньовий" метод дослідження структури органів і тканини.
Проходження УЗ-хвилі через речовину супроводжується періодичними згущеннями та розрідженнями частинок середовища на різних ділянках. Там, де частинки згущені, тиск підвищується, і навпаки.
У терапії переважно використовують ультразвук з частотою 800 кГц та інтенсивністю 1 Вт/см2. Для забезпечення контакту ділянку тіла змащують маслом і головним електродом здійснюють обертовий рух. Під час лікування головну роль відіграє теплова та механічна дія (мікромасаж).
Ультразвукова діагностика ґрунтується на тому, що здатність тканин поглинати ультразвук залежить від їхньої густини: здорова та хвора тканини мають різну густину, а тому й різну здатність до поглинання. Для діагностики, наприклад, пухлини головного мозку, один бік черепа опромінюють ультразвуком, на його протилежному боці розміщують приймач, який фіксує вихідне випромінювання. Переміщуючи джерело ультразвуку і приймач, на фотопапері отримаємо тіньове зображення пухлини, стороннього тіла. За такою методикою можна також досліджувати серце.
Інтенсивність ультразвуку, який проходить через серце, змінюється відповідно до скорочень серця внаслідок зміни товщини шару, що поглинає ультразвук. Так записується ультразвукова кардіограма.
У травматології та ортопедії використовують ультразвукову пилку - це "ніж" з насічкою, якому надають коливань з частотою від 20 до 50 кГц. Зубці насічки рухаються з розмахом 80 мкм, вибираючи мікрочастинки кістки, і виконують філігранну роботу.
Ультразвуком можна з'єднувати (зварювати) зламані кістки під час операцій, скріплювати їх з пересадженою кістковою тканиною. Розтин триває в середньому 4 хв, зварювання — 1,5...2 хв.
Таким чином, розглянуті первинні фізичні процеси, зумовлені дією ультразвуку, спричиняють такі ефекти в біооб'єктах:
мікровібрації на клітинному і субклітинному рівнях;
руйнування і збудження макромолекул;
зміну проникності біологічних мембран;
теплову дію;
руйнування клітин і мікроорганізмів.
Внаслідок цього застосування ультразвуку у медичній практиці здійснюється у двох напрямах:
а) діагностика та експериментальні дослідження:
б) терапія.