
- •Лекція 1 Тема: Основи біомеханіки та біоакустики
- •Елементи механіки.
- •Закони механіки і тіло людини.
- •Механічні властивості кісток.
- •М’язи. Робота м’язів.
- •Біофізика зовнішнього дихання.
- •Механічні властивості в легенях.
- •Тканини кровоносних судин
- •Звукові хвилі.
- •Характеристика слухового відчуття.
- •Аудіометрія.
- •Звукові методи діагностики.
- •Ультразвук.
- •Інфразвук. Вібрації.
- •Лекція 2
- •Основні поняття реології.
- •Ньютонівські і неньютонівські рідини. Кров.
- •Методи визначення коефіцієнта в'язкості.
- •Основи гемодинаміки.
- •Умова неперервності струмини.
- •Рух рідини у трубках із пружними стінками.
- •Судинна система
- •Основні гемодинамічні показники.
- •Біофізика кровообігу.
- •Лекція 3 Тема: Електричні властивості клітин, тканин та деякі методи реєстрації медичної і біологічної інформації. Електропровідність біологічних тканин і рідин.
- •Електрографія. Фізичні основи електрокардіографії.
- •Імпеданс біологічних тканин.
- •Предмет загальної та медичної електроніки
- •Основні групи електронних медичних приладів та апаратів
- •Надійність медичної апаратури
- •Загальна схема зняття, передачі та реєстрації медико-біологічної інформації
- •Медична електронна апаратура для реєстрації біопотенціалів серця
- •Біопотенціали
- •Біопотенціали дії
- •Проведення біопотенціалів по нервових і м'язових волокнах
- •Електрокардіографія
- •Електрокардіограма
- •Апаратура для реєстрації та спостереження електричної активності серцевої діяльності
- •Блок-схема електрокардіографа
- •Перспективи розвитку апаратури і методів електрокардіографії
- •Практичні проблеми запису екг. Артефакти
- •Основи електроплетизмографїї
- •Біофізичні основи методу електроплетизмографії
- •Лекція 4 Тема: Фізичні онови методів електролікування
- •Науково-методичне обґрунтування:
- •Виховні цілі:
- •Між предметна інтеграція.
- •План та організаційна структура.
- •Зміст лекції.
- •Постійний електричний струм. Гальванотерапія.
- •Імпульсні струми
- •Постійне електричне поле високої напруги
- •Струми вч, увч, нвч.
- •Магнітотерапія
- •Матеріали активізації студентів.
- •Матеріали для самопідготовки.
- •Медицина і фізика: елементи фахової компетентності
- •Фрейм додаткової інформації
- •Лекція 5 Тема: Елементи квантової механіки. Індуковане випромінювання. Лазери. Індуковане випромінювання
- •Рівноважна та інверсна заселеність
- •Будова та принцип дії лазера
- •Застосування лазерів у медицині.
- •Лекція 6 Тема: Теплове випромінювання біологічних об’єктів. Термографія.
- •Закон Кірхгофа
- •Закон випромінювання Планка
- •Закон Стефана—Больцмана
- •Закон зміщення Віна
- •Випромінювання Сонця
- •Інфрачервоне випромінювання
- •Ультрафіолетове випромінювання
- •Лекція 7
- •Оптичні методи дослідження медико-біологічних систем.
- •Історія відкриття явища просвітлення оптики, праці о. Смакули
- •Інші застосування явища інтерференції світла
- •Голографія та її застосування в медицині
- •Колориметрія.
- •Нефелометрія
- •Рефрактометрія
- •Волоконна оптика. Ендоскопія
- •Поляриметрія
- •Поляризаційний мікроскоп
- •Люмінесцентний мікроскоп
- •Око як оптична система
- •Формування зображення предметів в оці
- •Акомодація
- •Механізм зорового сприйняття
- •Денне та сутінкове бачення
- •Чутливість ока
- •Поле зору
- •Кольорове бачення
- •Недоліки ока
- •Лекція 8 Тема: Рентгенівське випромінювання. Методи рентгенівської діагностики в терапії. Історія відкриття рентгенівських променів, праці і. Пулюя
- •Природа рентгенівських променів і методи їх отримання
- •Гальмівне рентгенівське випромінювання
- •Характеристичне рентгенівське випромінювання, його природа. Закон Мозлі
- •Застосування рентгенівського випромівання в медицині
- •Методи рентгенодіагностики
- •Рентгеноскопія
- •Флюорографія (рентгенофлюорографія)
- •Рентгенографія
- •Е лектрорентгенографія
- •Підсилювачі рентгенівського зображення
- •Рентгенотелебачення
- •Рентгенотерапія
- •Рентгенівський структурний аналіз в медико-біологічних дослідженнях
- •Променеві навантаження на медичний персонал при рентгенодіагностичних дослідженнях
- •Деякі факти реакції крові на опромінення
- •Опромінення малими дозами великих груп людей
- •Латентний період - час виявлення в організмі порушень, викликаних радіацією
- •Проблеми ризику, пов'язаного із радіаційною дією
- •Комп'ютерна томографія
- •Лекція 9
- •Елементи фізики атомного ядра
- •Радіоактивність
- •Закон радіоактивного розпаду. Активність
- •Види радіоактивного розпаду
- •Біологічна дія іонізуючого випромінювання
- •Дозиметрія іонізуючого випромінювання
- •Використання ядерних випромінювань у медицині
Рентгенографія
Рентгенографія - метод рентгенологічного дослідження, при якому в ролі пристрою для реєстрації використовується рентгенівська плівка. Зображення предмета дістають на фотоплівці. Рентгенівську зйомку будь-якого органа проводять не менш ніж в двох взаємно перпендикулярних проекціях. Технічні умови зйомки автоматично задаються спеціальними приладами, що входять до комплекту рентгенівської установки. На рентгенограмах виявляється більше деталей зображення, ніж при рентгеноскопії.
Рентгенографічний метод характеризується значно більшою інформативністю, ніж рентгеноскопічний. Для аналізу рентгенограми можна залучити інших, більш досвідчених спеціалістів, і це є документ, який можна порівняти з наступними аналогічними знімками.
При рентгенографії сумарна експозиція в багато разів менша, ніж при рентгеноскопії (при рентгеноскопії, як видно з рис. 9.15, відстань між фокусами рентгенівської трубки і поверхнею тіла мінімальна - до 30-40 см, а час включення високої напруги на рентгенівській трубці є великим). За експозицією одне рентгенівське обстеження еквівалентне 5-9 рентгенограмам. Пропорційно експозиції змінюється величина тканинних доз. Для підвищення роздільної здатності і зменшення променевихнавантажень використовують підсилювачі рентгенівського зображення (ПРЗ). Застосування ПРЗ створює менші дозові навантаження, ніж при використанні звичайного екрана для рентгеноскопії. Проте і в цьому випадку при більшій тривалості обстеження можливі достатньо великі дозові навантаження.
З метою зниження доз опромінення рекомендується повна заміна рентгеноскопії на рентгенографію. Рентгеноскопічне дослідження, що проводиться за допомогою звичайного екрана без підсилювача рентгенівського зображення, повинно застосовуватись тільки у виключних випадках.
Е лектрорентгенографія
У цьому методі реєстрація випромінювання, що пройшло через пацієнта, здійснюється фотопровідним шаром високо-омного напівпровідника (селену, окису цинку тощо). Напівпровідник наноситься на провідну основу - підложку. Перед одержанням зображення шар напівпровідника - селенову пластину - "збуджують", заряджаючи її іонами звичайно із коронного розряду в повітрі, а підложку заземлюють (рис. 9.16, а). У результаті на протилежних поверхнях селенової пластини з'являються заряди протилежних знаків (зверху +, знизу -), всередині пластини створюється електричне поле.
При
опроміненні такої пластини рентгенівськими
променями в результаті фотопровідності
селену зменшується опір шару, що спонукає
до стікання нанесених на п
оверхню
шару зарядів пропорційно освітленості.
Заряди, що залишились після експонування,
утворюють приховане електричне зображення
(рис. 9.16, б). Його можна візуалізувати
двома способами:
1 - такий: а) проявлення електрично зарядженим порошком (в сухому вигляді або у виді суспензії, див. рис. 9.16, в);
б
)
закріплення безпосередньо на шарі або
переносу на папір і закріплення (рис.
9.16, г);
2 - шляхом безпосереднього електронного зчитування.
М
етод
відрізняється високою економічністю
(використовується звичайний папір
замість дорогої рентгенівської плівки),
швидкістю отримання готового знімка
(2-2,5 хв), зручністю роботи на світлі без
спеціальної фотолабораторії. При
використанні цього методу 1 м2
селенових пластин заміняє понад 3000 м2
рентгенівської плівки і тим самим
звільняється для інших цілей 40-50 кг
срібла і 60-90 кг дефіцитної фотографічної
желатини.
Променеве навантаження на хворого при електрорентгенографії із застосуванням пластин СЕРП-100-150 таке ж, як і при звичайній рентгенографії. Розробка більш чутливих до рентгенівського випромінювання напівпровідникових матеріалів є дуже актуальна проблема, яка дасть змогу знизити променеві навантаження.