
- •Электроника
- •Силовая электроника
- •Предисловие
- •Тема 1. Элементная база силовой электроники 25
- •Тема 2. Управление силовыми полупроводниковыми
- •Тема 3. Методы и схемы защиты полупроводниковых
- •Тема 4. Применение мощных полупроводниковых
- •Предисловие
- •Развитие полупроводниковых ключей
- •Тема 1. Элементная база силовой электроники
- •1.1 Транзисторы
- •1.1.1 Основные виды силовых электронных ключей
- •1.1.2. Силовые биполярные транзисторы
- •1.1.3. Мощные мдп-транзисторы
- •1.1.4. Биполярные транзисторы с изолированным затвором (igbt)
- •1.1.5. Статические индукционные транзисторы
- •1.2. Тиристоры
- •1.2.1. Однооперационные тиристоры
- •1.2.2. Запираемые тиристоры
- •1.2.3. Индукционные тиристоры
- •1.2.4. Полевые тиристоры
- •1.2.5. Модули силовых электронных ключей.
- •1.2.6 Элементная база и типовые узлы систем управления
- •1.2.7. Формирователи импульсов управления
- •1.2.8. Микропроцессоры в системах управления
- •Тема 2. Управление силовыми полупроводниковыми
- •2.1. Функции и структура систем управления преобразователями
- •2.2. Основные типы формирователей импульсов управления
- •2.3. Формирователи импульсов управления с совместной передачей энергии и формы управляющего сигнала
- •2.3.1. Трансформаторные фиу биполярных транзисторов
- •2.3.2. Трансформаторные фиу для ключей с изолированным затвором
- •2.3.3. Трансформаторные фиу тиристоров
- •2.4. Формирователи импульсов управления с раздельной передачей питания и информационного сигнала
- •2.4.1. Потенциальная развязка информационного сигнала
- •2.4.2. Драйверы силовых транзисторов
- •2.4.3. Подключение драйверов к входным цепям силовых транзисторов
- •2.4.4. Драйверы тиристоров
- •2.5. Источники питания драйверов
- •Тема 3. Методы и схемы защиты полупроводниковых ключей
- •3.1. Основные виды перегрузок по напряжению и току
- •3.2. Методы защиты от помех
- •3.3. Защитные цепи силовых ключей
- •3.3.1. Цепи формирования траектории рабочей точки транзисторов
- •3.3.2. Защитные цепи тиристорных ключей
- •3.3.3. Защитные цепи силовых модулей
- •3.4. Защита силовых ключей от режимов короткого замыкания
- •3.5. Силовые ключи с интегрированной системой защиты
- •Тема 4. Приминение мощных полупроводниковых ключей в силовых схемах
- •4.1. Основные области применения ключевых приборов
- •4.2. Типовые схемы транзисторных ключей
- •4.2.1. Ключ на биполярном транзисторе
- •4.2.2. Ключ на мощном мдп-транзисторе
- •4.2.3. Ключ на биполярном транзисторе с изолированным затвором
- •4.2.4. Ключ на статическом индукционном транзисторе
- •4.3. Тиристорные ключи
- •4.3.1. Ключ на тиристоре с электростатическим управлением
- •4.3.2. Ключи на тиристорах с регенеративным включением
- •4.3.3. Особенности запирания тиристорных ключей
- •4.4. Применение ключевых транзисторов в схемах электронных балластов
- •4.5. Применение мощных мдп-транзисторов в импульсных источниках питания
- •4.6. Применение мощных ключей в схемах управления электродвигателями переменного тока
- •4.6.1. Основные режимы работы силовых ключей в шим-инверторах для асинхронных электродвигателей
- •4.6.2. Особенности применения igbt в схемах с индуктивной нагрузкой
- •4.6.3. Переключение полевых тиристоров мст в мостовых схемах
- •Заключение
- •Литература
- •Учебное пособие
- •Силовая электроника
2.4.4. Драйверы тиристоров
Особенности драйверов тиристоров рассмотрим на примере запираемого ключа GTO, как наиболее применяемого. Предельная переключаемая мощность двухоперационного тиристора достигается, когда правильно задан режим его работы, как по анодной цепи, так и по цепи управления [3]. Параметры управления обеспечивает драйвер на рис. 2.45.
Сигнал от информационной цепи преобразуется в узле согласования и поступает в выходной блок драйвера, который формирует импульс управления на включение и выключение. Схема, формирующая импульс отпирания, обеспечивает входной импульс тока с необходимой амплитудой и фронтом нарастания (IG > 1 A; tR < 200 нс).
Рис. 2.45
Требования к схеме запирающего сигнала:
1. Должна вырабатывать большую амплитуду тока выключения, определяемую током нагрузки и коэффициентом запирания ключа. Для мощных GTO ток выключения достигает нескольких сотен ампер. Используют параллельную сборку мощных МДП-транзисторов с малой величиной сопротивления открытого канала.
2. Для выключения GTO источник запирающего напряжения должен иметь внутреннее сопротивление меньше входного сопротивления силового ключа, которое перед выключением составляет 0.02...0.2 Ом.
3. Канал запирания должен вырабатывать на завершающем этапе выключения обратное напряжение смещения, близкое к пробивному напряжению катодного перехода GTO, которое составляет 10... 15 В.
4. Для увеличения стойкости тиристора к скачкам анодного напряжения в закрытом состоянии необходимо обеспечить отрицательное смещение (-2.5...-5 В).
Типовая форма запирающего тока показана на рис. 2.46, а.
Для тиристоров на токи до 200 А выходные узлы драйверов имеют простую структуру и с дополнительными элементами подключения (рис. 2.46, б) обеспечивают надежную работу ключей.
а б
Рис. 2.46
2.5. Источники питания драйверов
По числу источников питания драйверы можно разделить на две группы:
1. С двумя источниками питания, один из которых предназначен для импульса отпирания, другой соответственно для импульса запирания.
2. С одним источником питания для отпирания силового ключа. Обеспечение энергией канала запирания осуществляется за счет накопителя энергии (емкости) и за счет использования мостовой схемы выходного узла драйвера. Режимы питания драйверов показаны на рис.2.47.
Энергоснабжение источников обеспечивается:
1. Применением батареи гальванических элементов.
2. Преобразование электроэнергии от сети переменного тока или от источников постоянного тока.
3. Преобразование электроэнергии из выходной цепи силового ключа. Примеры реализации источников питания драйверов [3]. На рис. 2.48 представлены схемы на основе низкочастотных трансформаторов, преобразующих энергию переменной сети. В схемах осуществляется параметрическая стабилизация источника питания для канала запирающего тока. Требованием к данным источникам является сохранение напряжения в допустимых параметрах при изменении напряжения питающей цепи.
а б
Рис. 2.47
Рис. 2.48
На рис. 2.49 показаны варианты подключения рассмотренных в разделе 2.4.2 драйверов к входным цепям силовых ключей при данном способе организации питания.
Недостатком источников питания является: невысокая стабильность; - повышенные массогабаритные показатели (трансформатор).
Для организации раздельного питания в драйверах многофазных преобразователей используют импульсные методы регулирования постоянного напряжения на основе обратноходовых схем. рис. 2.50.
При открытом состоянии ключа в обмотках импульсного трансформатора накапливается энергия, которая затем при закрывании ключа передается в нагрузку. Для сглаживания выходного напряжения используется емкостной фильтр. Импульсный трансформатор обеспечивает необходимую развязку, а также получение выходного напряжения требуемой амплитуды и полярности. Для стабилизации выходного напряжения используется импульсный метод регулирования как длительности открытого состояния ключа (ШИР), так и частоты (ЧИР). Недостатком схемы является невозможность работы в режиме холостого хода.
Рис. 2.49
Рис. 2.50
Рис. 2.51
Контрольные вопросы
Как классифицируются силовые полупроводниковые приборы?
Какие основные параметры при выборе силовых транзисторов?
Какие схемотехнические меры применяют применяют для уменьшения мощности коммутации силового транзистора?
Каковы энергетические особенности силовых МОП-транзисторов?
Чем обусловлено введение дополнительных узлов принудительной коммутации транзисторов?
Какие эксплутационные параметры являются наиболее важными для мощных вентилей?
Какие способы переключения транзистора существуют и в чем их сущность?
Каковы способы ускорения процессов переключения транзисторов?
Как уменьшить мощность перенапряжения транзистора в режиме переключения с RL-нагрузкой?
Как уменьшить потери на переключение силового транзистора?
Объясните динамические потери, возникающие в тиристорах.
Как влияют гармонические составляющие тока на мощность, рассеиваемую на транзисторах?
Из каких составляющих складываются потери в тиристорах?
Как влияют гармонические составляющие на мощность, рассеиваемую в полупроводниках.
Как влияет коэффициент заполнения на мощность переключения при коммутации активно-индуктивной нагрузки?
Покажите энергетические соотношения в мостовой схеме, работающей в режиме противовключений.
Как меняется мощность переключений при изменении пульсации и разрывности тока нагрузки?