
- •Матеріали для підготовки до практичного заняття для студентів з спеціальності «Сестринська справа» з мікробіології, вірусології та імунології
- •Тема 1: Живильні середовища для культивування мікроорганізмів. Типи I механiзм живлення бактерiй. Методи стерилiзацiї і дезинфекцiї.
- •Тема 2: Ріст і розмноження мікроорганізмів. Основні методи і принципи виділення чистих культур. Виділення чистих культур аеробних бактерій.
- •Тема 3: Типи дихання бактерій. Створення анаеробних умов. Виділення чистих культур анаеробних мікроорганізмів. Ідентифікація бактерій.
- •Короткий виклад матеріалу
- •Класифікація живильних середовищ
- •Типи і механізми живлення бактерій
- •Хімічний склад клітини
- •Типи метаболізму бактерій
- •Класифікація ферментів бактерій
- •Ріст і розмноження мікроорганізмів
- •Поділ мікроорганізмів за температурним оптимумом
- •Принципи і методи виділення чистих культур бактерій
- •Поділ бактерій за типом дихання
- •Стерилізація механічним способом
Типи метаболізму бактерій
Тип живлення |
Джерела енергії, H/e-, вуглецю |
Приклади мікроорганізмів |
Фотолітотрофи - автотрофи |
Енергія світла Неорганічні донори H/e- CO2 джерело вуглецю |
Водорослі сульфобактерії ціанобактерії |
Фотоорганотрофи – гетеротрофи |
Енергія світла, Органічні донори H/e- Органічні джерела вуглецю |
Пурпурні і зелені бактерії |
Хемолітотрофи - автотрофи |
Хімічні джерела енергії (неорганічні) Неорганічні донори H/e- CO2 джерело вуглецю |
Нітрифікуючі бактерії, залізобактерії |
Хемоорганотрофи- гетеротрофи |
Хімічні джерела енергії (органічні) Органічні донори H/e- Органічні джерела вуглецю |
Найпростіші Гриби Більшість бактерій |
Автотрофи (autos - сам, trophe - живлення) здатні синтезувати всі необхідні їм органічні сполуки з CO2 як єдиного джерела вуглецю. Гетеротрофи (heteros -інший) - мікроорганізми, джерелом вуглецю для яких є органічні сполуки. Вони здатні споживати будь-які прості й складні вуглецеві сполуки - цукри, амінокислоти, багатоатомні спирти, парафіни та ін.
Ступінь вираження гетеротрофії у бактерій може бути найрізноманітніша. Найвищу гетеротрофність мають прокаріотичні організми, які здатні жити тільки всередині живих клітин (рикетсії, хламідії). Їх метаболічні шляхи повністю залежать від організму хазяїна. Такі мікрорганізми називають облігатними (суворими) паразитами.
Однак багато мікробів можна вирощувати на штучних живильних середовищах, до складу яких входять білки, пептиди, вітаміни, фрегменти нуклеїнових кислот. Такі форми бактерій, здатних рости поза клітинами людини або тварин при створенні необхідних умов, називають факультативними паразитами.
Більшість бактерій, що населяють земну кулю (понад 99 %), належать до сапрофітів. Вони безпосередньо від живих організмів не залежать і живляться за рахунок мертвих органічних залишків.
Мікроорганізмам необхідний азот для синтезу азотомістких сполук. Джерела його можуть бути різноманітними. Одні бактерії здатні засвоювати молекулярний азот повітря (бульбочкові мікроби), інші використовують різноманітні субстрати. Бактерії, як правило, засвоюють азот у відновленій формі - це солі амонію, сечовини, органічні сполуки (амінокислоти, пептиди). Однак окислені форми азотистих сполук (нітрати) також можуть бути засвоєні мікробами. У клітині вони відновлюються до аміаку за допомогою ферментів нітратредуктази й нітритредуктази.
Дикі штами бактерій здатні синтезувати всі необхідні їм речовини з обмеженого числа органічних сполук, наприклад, глюкози та солей амонію. Вони називаються прототрофами. Окремі мікроорганізми (варіанти прототрофів) втратили здатність до синтезу деяких необхідних їм ростових факторів, отже не можуть рости на мінімальних живильних середовищах. Їх називають ауксотрофними організмами.
Джерела енергії та донори електронів. Залежно від джерела енергії, що засвоюють мікробні клітини, їх поділяють на фототрофи і хемотрофи.
Фототрофні бактерії здатні використовувати енергію сонячного світла. Їх інакше називають фотосинтезуючими бактеріями. Патогенних для людини серед них немає. Інші прокаріоти, які одержують енергію за рахунок окисно-відновних реакцій в субстратах, називаються хемотрофами.
Для здійснення різноманітних реакцій клітині необхідні електрони. Речовини, які в процесах біохімічних перетворень віддають електрони, називаються донорами. Молекули, які одержують електрони, називаються акцепторами.
Мікроорганізми, для яких джерелом електронів є неорганічні сполуки типу Н2, Н2S, NH3+ , Fe +2 та інші, називаються літотрофами (litos - камінь). Інші бактерії, для яких донором електронів виступають органічні речовини, називаються органотрофами.
Залежно від способу одержання енергії, донора електронів та джерела вуглецю для засвоєння можна виділити 8 основних типів прокаріотичних організмів: фотолітоавтотрофи й фотолітогетеротрофи, фотоорганоавтотрофи й фотоорганогетеротрофи, хемолітоавтотрофи й хемолітогетеротрофи, хемооргано-автотрофи й хемоорганогетеротрофи.
Мікроорганізми, які здатні викликати у людини захворювання, належать до хемоорганогетеротрофів.
Бактерії, яким притаманний один із спосібів живлення, позначають як облігатні, а ті, які використовують два джерела енергії, - міксотрофи.
Для здійснення своїх метаболічних перетворень і забезпечення життєдіяльності клітина потребує інші неорганічні сполуки. Так, сірка входить до складу деяких амінокислот (метіонін, цистеїн), вітамінів та кофакторів (біотин, ліпоєва кислота, кофермент А), а без фосфору неможливо синтезувати нуклеїнові кислоти, він необхідний компонент фосфоліпідів, коферментів.
Мікроорганізми засвоюють сірку з природних джерел, де вона знаходиться у формі неорганічних солей (сульфатів, сульфідів) або елементарної сірки, а потреби у фосфорі задовільняються за рахунок засвоєння неорганічних фосфатів.
Усі необхідні йони металів клітина одержує за рахунок неорганічних сполук. Деякі елементи (магній, кальцій, калій, залізо) потрібні в досить великих концентраціях. Потреби в інших (цинк, марганець, молібден, ванадій, кобальт) незначні. Проте їх роль у клітині надзвичайно різноманітна, так як вони входять до складу основних клітинних метаболітів, виконуючи життєво важливі функції.
При культивуванні бактерій крім білків, жирів та вуглеводів, які надходять у клітину з навколишнього середовища, до середовищ додають речовини, які виконують функцію стимуляторів росту. Вони включаються до складу клітинних метаболітів, каталізують біохімічні перетворення. Такими факторами є деякі вітаміни (біотин, тіамін, пантотенова кислота, холін, ціанокобаламін, нікотинова та фолієва кислоти), пуринові та піримідинові основи, жирні кислоти, гемін, коензим ферменту дегідрогенази.
Надходження речовин у клітину.
Незважаючи на досягнення мікробіологічної науки у вивченні процесів обміну в бактеріальній клітині остаточно інтимні механізми транспорту поживних речовин в клітину і виведення метаболітів назовні не з’ясовано. Встановлено, що мікробам притаманний голофітний тип живлення, тобто вони здатні поглинати живильні речовини тільки в розчиненому вигляді .
Однак деякі субстрати не розчиняються у воді (білки, полісахариди), або утворюють колоїдні розчини, які не проникають у клітину. В такому випадку клітинні екзоферменти, які виділяються в навколишнє середовище, викликають гідроліз цих субстанцій, розщеплюючи їх до більш простих і дрібних молекул і переводячи в розчинний стан.
Виділяють декілька механізмів проникнення речовин. Пасивна дифузія функціонує тоді, коли створюється градієнт концентрації речовини всередині бактеріальної клітини та зовні. Вона відбувається пасивно, тому що не вимагає затрат енергії.
Полегшена дифузія здійснюється за рахунок особливих білків - пермеаз, які містяться в цитоплазматичній мембрані. Цей процес також не вимагає енергетичного забезпечення.
Однак більшість поживних речовин, метаболітів, іонів проникають у клітину за допомогою активного транспорту. Його також забезпечують білки-пермеази, але вони є високоспецифічними й здатні переносити тільки певні субстрати. Цей процес відбувається за рахунок енергії, яку генерує клітина, тому можливий перенос і проти градієнта концентрації речовини. Якщо цьому процесу передує певна хімічна модифікація молекули, його називають транслокацією хімічних груп. Виділяють також механізм іонного транспорту, при якому відбувається перенос у клітину окремих неорганічних іонів.
Конструктивний метаболізм. Обмін білків у мікроорганізмів відбувається за двома основними напрямками: розщеплення поліпептидів до амінокислот і біосинтетичні процеси, пов’язані з конструюванням нових молекул. Перший напрямок забезпечують ферменти екзопротеази, що виділяються в навколишнє середовище, та ендопротеази, які нагромаджуються в клітині. Кінцеві продукти -амінокислоти, - що утворюються під час цього процесу, можуть зазнавати дезамінування та декарбоксилювання, перетворюючись на аміак, вуглекислий газ, оксикислоти.
Біосинтетичні процеси відбуваються за участю готових амінокислот, які трансамінуються або перамінуються. Деякі мікрорганізми здатні синтезувати амінокислоти з простих сполук азоту. Необхідно зазначити, що мікроорганізми, на відміну від клітин організму людини, здатні синтезувати незамінні амінокислоти - лізин, метіонін, триптофан.
Вуглеводний обмін забезпечуєтся або гідролітичним розщепленням молекул з утворенням глюкози й мальтози або фосфоролізом. І в одному, і в іншому випадках процеси не супроводжуються вивільненням енергії. Це відбувається при бродінні - окисно-відновних реакціях анаеробного розщеплення органічних речовин, головним чином, вуглеводів. Метаболіти, які утворюються під час бродіння, використовуються для біосинтетичних процесів. Продуктами бродіння є різні органічні кислоти (молочна, масляна, оцтова, мурашина), спирти (етиловий, бутиловий, пропіловий), ацетон, диоксид вуглецю, водень. Залежно від того, який основний продукт накопичується в середовищі, розрізняють молочнокисле, маслянокисле, мурашинокисле, спиртове та інші види бродіння. При бродінні вивільняється незначна частка енергії, яка накопичена в речовині. Як правило, на 1 молекулу субстрату утворюється 2 молекули аденозинтрифосфорної кислоти (АТФ).
Синтез вуглеводів відбувається або з вуглекислого газу (автотрофи), або за рахунок вуглецемістких органічних сполук.
Як було зазначено, ліпіди мікроорганізмів представлено насиченими та ненасиченими жирними кислотами, фосфоліпідами, стеринами, восками, каротиноїдами та іншими речовинами. Мікроорганізми здатні до синтезу вищих жирних кислот, який відбувається за участю особливих білків, що переносять ацильні фрагменти. Часто з цією метою клітини використовують метіонін. Синтезовані ліпіди включаються до складу фосфоліпідів. Розщеплення ліпідів відбувається за участю ліпаз та інших ліполітичних ферментів.
Ферменти мікроорганізмів. Усі біосинтетичні процеси та інші метаболічні перетворення в клітині відбуваються за участю особливих високоактивних біологічних каталізаторів, які називаються ферментами. Вони належать до 6 класів: гідролази (забезпечують реакції розщеплення за участю води), оксидоредуктази (каталізують різноманітні окисно-відновні реакції, беруть участь у процесах дихання), ізомерази (здійснюють перенос фосфатних груп у молекулах, спонукаючи процеси ізомеризації), трансферази (переносять аміногрупи, аденілові групи з одних субстратів на інші), ліази (каталізують реакції відщеплення хімічних груп негідролітичним шляхом), лігази (відповідають за синтез нових речовин, який відбувається за рахуноко енергії АТФ).
Здатність утворювати певні ферменти кодується клітинним геномом і є постійною ознакою бактерій. Так як бактеріальна клітина займає невеликий об’єм, у ній переважають адаптивні ферменти над конститутивними. Перша група ферментів синтезується тільки за умов наявності субстрату для їх дії. Ферменти другої групи постійно присутні в бактерії в певних концентраціях. Вони зумовлюють першочергові біосинтетичні потреби клітин.
Клітина виділяє ферменти в навколишнє середовище (екзоферменти). Там вони здійснюють контактне позаклітинне перетравлювання речовин або пошкоджують тканини організму господаря. Ендоферменти локалізуються на цитоплазматичній мембрані, в периплазматичному просторі.