
- •Состав, структура и функции молекул днк и рнк.
- •10.4 Репликация днк, трансляция, транскрипция.
- •10.5 Геном организма. Генофонд.
- •10. 6 .Основные законы Менделя.
- •10.7 .Рецессивные и доминантные гены и признаки.
- •10. 8. Биосинтез белков и роль ферментов.
- •10. 9. Метаболизм
- •10. 10. Генная инженерия. Проблема клонирования.
- •10.11. Закон дивергенции.
Сз 10.2.Ген, его свойства. Свойства генетического кода.
Ген (др.-греч. γένος — род) — структурная и функциональная единица наследственности живых организмов. Ген представляет собой участок ДНК, задающий последовательность определённого полипептида либо функциональной РНК. Гены (точнее, аллели генов) определяют наследственные признаки организмов, передающиеся от родителей потомству при размножении.Генети́ческий код — свойственный всем живым организмам способ кодирования аминокислотной последовательности белков при помощи последовательности нуклеотидов. В РНК используются те же нуклеотиды, за исключением тимина, который заменён похожим нуклеотидом — урацилом, который обозначается буквой U (У в русскоязычной литературе).
Состав, структура и функции молекул днк и рнк.
В зависимости от того, какой моносахарид содержится в структурном звене полинуклеотида - рибоза или 2-дезоксирибоза, различают рибонуклеиновые кислоты (РНК) и дезоксирибонуклеиновые кислоты (ДНК).
В главную (сахарофосфатную) цепь РНК входят остатки рибозы, а в ДНК – 2-дезоксирибозы. Нуклеотидные звенья макромолекул ДНК могут содержать аденин, гуанин, цитозин и тимин. Состав РНК отличается тем, что вместо тимина присутствует урацил.
Это самые длинные из известных макромолекул. Значительно меньше молекулярная масса РНК (от нескольких сотен до десятков тысяч). ДНК содержатся в основном в ядрах клеток, РНК – в рибосомах и протоплазме клеток.
При описании строения нуклеиновых кислот учитывают различные уровни организации макромолекул: первичную и вторичную структуру
10.4 Репликация днк, трансляция, транскрипция.
Транскрипция ДНК в ходе деления клеток начинается с разделения двух цепей, каждая из которых становится матрицей, синтезирующей нуклеотидную последовательность новых цепей. Хеликаза, топоизомераза и ДНК-связывающие белки расплетают ДНК, удерживают матрицу в разведённом состоянии и вращают молекулу ДНК. Правильность репликации обеспечивается точным соответствием комплементарных пар оснований. Репликация катализуется несколькими ДНК-полимеразами, а транскрипция – ферментом РНК-полимеразой. После репликации дочерние спирали закручиваются обратно уже без затрат энергии и каких-либо ферментов
Следует заметить, что точность воспроизведения РНК и белков в тысячи раз ниже. Это связано с тем, что транскрипция и трансляция, затрагивающие только одну клетку, – не столь жизненно важные процессы, как репликация, которая определяет будущее всего вида.
10.5 Геном организма. Генофонд.
Гено́м — совокупность наследственного материала, заключенного в клетке организма[1]. Геном содержит биологическую информацию, необходимую для построения и поддержания организма. Генофонд — понятие из популяционной генетики, описывающее совокупность всех генных вариаций (аллелей) определённой популяции. Популяция располагает всеми своими аллелями для оптимального приспособления к окружающей среде. Можно также говорить о едином генофонде вида, так как между разными популяциями вида происходит обмен генами.
Если во всей популяции существует лишь один аллель определённого гена, то популяция по отношению к вариантам этого гена называется мономорфной. При наличии нескольких разных вариантов гена в популяции она считается полиморфной.
10. 6 .Основные законы Менделя.
Законы Менделя — это принципы передачи наследственных признаков от родительских организмов к их потомкам, вытекающие из экспериментов Грегора Менделя. Эти принципы послужили основой для классической генетики и впоследствии были объяснены как следствие молекулярных механизмов наследственности. Хотя в русскоязычных учебниках обычно описывают три закона, «первый закон» не был открыт Менделем. Особое значение из открытых Менделем закономерностей имеет «гипотеза чистоты гамет»[1]