
- •4.2. Электромагнитные фрикционные муфты
- •§ 1.1. Производственная травма и производственное заболевание
- •§ 1.2. Законодательные акты и нормативные документы по от
- •§ 1.3. Государственный и общественный контроль
- •§ 1.4. Ответственность за нарушение правил по от
- •7.2. Токоведущая цепь и дугогасительная система автоматов
- •7.5. Реостаты
- •0.3. Реле времени с механическим замедлением
- •7.4. Расцепители автоматов
7.4. Расцепители автоматов
Отключение автоматов происходит под действием на механизм свободного расцепления элементов защиты — расцепителей. Наиболее распространены максимальные расцепители. Для защиты оборудования от перегрузок необходимо, чтобы времятоковая характеристика расцепителя шла возможно ближе к характеристике защищаемого объекта.
В максимальных расцепителях широко используются электромагнитные системы и тепловые системы с биметаллической пластиной. Электромагнитный расцепитель (поз. 8, рис. 17.1) прост по конструкции, обладает высокой термической и электродинамической стойкостью и стойкостью к механическим воздействиям. До момента воздействия на механизм свободного расцепления якорь расцепителя обычно преодолевает значительный свободный ход (5—10 мм). Расцепление происходит за счет удара, в котором основную роль играет кинетическая энергия якоря, накопленная при его движении. Обмотка электромагнита расцепителя включена последовательно с нагрузкой. Регулирование тока срабатывания может производиться за счет натяжения противодействующей пружины расцепителя или изменения числа витков обмотки.
Для создания выдержек времени между электромагнитом и механизмом свободного расцепления ставятся устройства задержки. Селективно работающие автоматы должны быть строго согласованы по времени срабатывания, что достигается применением часовых механизмов. Выдержка времени таких устройств не зависит от тока, поэтому они не приспособлены для защиты от перегрузок.
Выдержки времени, зависимые от тока нагрузки, создаются разнообразными замедляющими устройствами, осуществляющими демпфирование за счет вязкости перетекающей жидкости или газа. Наиболее просто зависящая от тока выдержка времени получается с помощью тепловых расщепителей (поз. 5, рис. 17.1), аналогичных по конструкции тепловым реле. Их времятоковая характеристика достаточно хорошо согласуется с защищаемым объектом. Однако эти расщепители имеют следующие недостатки:
1. Слабая термическая стойкость требует высокого быстродействия при отключении больших токов. В этих случаях обычно применяется комбинация из электромагнитного и теплового расцепителей. Электромагнитный расцепитель работает при КЗ, тепловой — при перегрузках.
2. С ростом отключаемого тока растет усилие, необходимое для расцепления автомата. Поэтому тепловой расцепитель применяется при токах до 200 А.
3. Выдержка времени тепловых расцепителей зависит от температуры окружающей среды, что ограничивает их применение.
4. Разброс в токе срабатывания у тепловых расцепителей примерно в 2 раза больше, чем у электромагнитных.
5. Малая термическая стойкость тепловых расцепителей определяет малую допустимую длительность КЗ, что затрудняет получение необходимой селективности.
Более совершенной является защита с помощью полупроводникового расцепителя (рис. 12.17).
Для дистанционного отключения автомата устанавливается независимый электромагнитный расцепитель (поз. 11, рис. 17.1), электромагнит которого может быть как постоянного, так и переменного тока. Обмотка электромагнита рассчитывается на кратковременный режим работы.
Номинальное напряжение расцепителя берется не выше 220 В. Если источник питания имеет более высокое напряжение, то ставится добавочный резистор.
Минимальный расцепитель выполняется также электромагнитного типа (поз. 10, рис. 17.1). Для разрыва цепи катушки в отключенном положении она питается через замыкающий вспомогательный контакт. Этот контакт при включении замыкается раньше глазных контактов. Благодаря этому механизм подготавливается к работе в процессе самого включения. Напряжение отпускания электромагнита регулируется в пределах 35—70 % номинального. При напряжении, меньшем напряжения уставки, пружина отрывает якорь и воздействует на механизм свободного расцепления.
Минимальный расцепитель может использоваться для дистанционного отключения, если последовательно с ним включить кнопку с размыкающим контактом. Если же минимальный расцепитель воздействует на механизм свободного расцепления через часовой механизм с выдержкой времени, то дистанционное отключение должно производиться независимым расцепителем.
Прокладка кабелей в подземных выработках
В подземных выработках угольных шахт для передачи и распределения электрической энергии в зависимости от назначения следует применять кабели; а) для новой стандартной прокладки по капитальным и основным вертикальным наклонным выработкам, проведенным под углом свыше 45°, - бронированные с проволочной броней в свинцовой или ПВХ-оболочке с ПВХ-ной, резиновой или бумажной обедненно пропитанной изоляцией; для горизонтальных выработок и наклонных выработок, проведенных под углом 45°, допускается применение бронированных с ленточной броней и бумажной нормально пропитанной изоляцией; б) для присоединения КТП и РП участков - бронированные на напряжение 6 (10) кВ и 660 (1140) В повышенной гибкости и прочности (допускается применение бронированных кабелей с проволочной и ленточной броней); присоединение РП к КТП допускается гибкими кабелями; при напряжении 660В и выше, а также для РП тупиковых выработок шахт, опасных по газу, независимо от напряжения должны применяться гибкие экранированные; в) для питания передвижных ГММ - гибкие экранированные; г) для питания выемочных машин на крутых пластах с применением кабелеподборщиков - гибкие экранированные специальной конструкции повышенной прочности; д) для участка линии между ручным электросверлом и муфтой - особо гибкие экранированные; е) для стационарных осветительных сетей - бронированные в свинцовой или ПВХ-оболочке, а также гибкие.
Сечение жил силовых бронированных кабелей напряжением до 10 кВ и гибких кабелей напряжением до1140 В, применяемых для прокладки в подземных выработках шахт, приведены в табл. 1. Допустимая разность уровней между высшей и низшей точками расположения кабелей на наклонной и вертикальной трассе приведена в табл. 2.
Таблица 1 - Сечение жил силовых кабелей, применяемых в подземных выработках шахт
Место прокладки
Сечение кабеля, мм2
Примечание
Бронированные силовые кабели напряжением до 10 кВ
Вертикальные и крутые (свыше 45°) выработки
35 ... 185
При условии обеспечения допустимой плотности тока, потери напряжения, кратности тока КЗ
То же
Горизонтальные и наклонные (до 45°) выработки
16... 185
Гибкие кабели напряжением до 1140 В
Горизонтальные и наклонные (до 45°) выработки Присоединение АД
10 ... 95 10 ... 70
То же То же
Кабели для осветительных сетей
Горизонтальные и наклонные (до 45°) выработки
Для подключения светильников
2,5 ... 10 1,5 ... 2,5
То же То же
Таблица 2 - Допустимая разность между высшей и низшей точками расположения кабелей на наклонной (вертикальной) трассе
Характеристика кабеля
Допустимая разность уровней (м) для кабеля в свинцовой оболочке на напряжение, кВ
до 3
6
10
35
С нормально пропитанной бумажной изоляцией: бронированные небронированные
25 20
15 15
15 15
5 5
С обедненно пропитанной изоляцией:
бронированные в общей свинцовой оболочке бронированные лентой в общей оболочке, но с отдельно освинцованными жилами
100 300
100 300
100 300
100 300
С бумажной изоляцией, пропитанной нестекающей массой
Без ограничения
Для сетей освещения очистных забоев шахт, не опасных по газу и пыли, при линейном напряжении не выше 24 В допускается применение неизолированных проводов на изолированных опорах, при этом обмотки ВН и НН осветительного трансформатора должны быть разделены металлическим заземленным экраном.
Для контрольных цепей и цепей управления наравне с бронированными кабелями допускается применение гибких (для передвижных установок - только гибких) кабелей.
Линии общешахтной, диспетчерской и аварийной телефонной связи, а также местной связи подъемных установок следует выполнять только шахтными телефонными кабелями с медными жилами пластмассовой изоляцией, с пластмассовой негорючей и металлической броней (допускается применение телефонных кабелей без металлической брони). Для местных линий связи в забоях допускается применение гибких контрольных кабелей, а также вспомогательных жил гибких силовых экранированных кабелей. Для искробезопасных цепей сигнализации, телеконтроля и диспетчеризации допускается применение отдельных шахтных телефонных кабелей и свободных жил в кабельных линиях связи. Для неискробезопасной сигнализации должны применяться кабели в соответствии с допустимым напряжением, токами нагрузки и условиями прокладки. В шахтах, не опасных по газу и угольной пыли, для линий сигнализации и аварийной остановки конвейеров допускается применение неизолированных проводов при напряжении не выше 24 В; в шахтах, опасных по газу или пыли, указанные линии должны быть искробезопасными.
Кабели общепромышленного назначения допускаются к применению в шахтах на основании заключения МакНИИ. Запрещается применение кабелей всех назначений (силовых, контрольных и др)
с алюминиевыми жилами или алюминиевой оболочкой в подземных выработках и стволах шахт, а также в связанных со стволами зданиях.
В случаях применения на действующих шахтах и горизонтах бронированных кабелей с наружным джутовым (горючим) покровом он должен быть снят с участков кабелей, проложенных в камерах, а броня кабеля покрыта специальным лаком, предохраняющим от коррозии. Покрытие лаком в дальнейшем должно производиться по мере необходимости.
Перед спуском кабеля в шахту необходимо проверить RMJ между каждой парой силовых жил по отношению к заземляющей. Для отдельной жилы на строительной длине гибкого кабеля оно должно быть не менее 100 МОм.
В горизонтальных и наклонных выработках с углом падения до 45° с металлической или деревянной крепью должна применяться «мягкая» подвеска кабеля, предохраняющая его от разрыва при внезапном давлении на кабель в прилегающем пролете из-за отрыва от места крепления конструкции подвески кабеля. В качестве «мягкой» подвески применяют деревянные колышки, синтетические или брезентовые ленты. Подвеска и провес кабеля должны располагаться на такой высоте, чтобы исключить возможность повреждения кабеля при сходе вагонеток с рельсов. При обрыве кабеля с подвески должна исключаться возможность его падения на рельсы и рештаки. Расстояние между подвесками должно быть не более 3 м, а расстояние между кабелями - не менее 5 см. В выработках с бетонной, кирпичной или аналогичной крепью для подвески кабелей применяют металлические конструкции, изготавливаемые из полосовой стали или проволоки.
В выработках с углом падения более 45° подвеску кабеля производят хомутами, скобами или иными приспособлениями, разгружающими кабель от действия собственного веса и исключающими его проскальзывание и образование напусков.
Силовые кабели не должны прокладываться по одной стороне выработки совместно с вентиляционными трубами из горючих материалов. Если невозможно осуществить прокладку силового кабеля по одной стороне выработки, а кабелей связи, сигнализации и неизолированных проводов по другой стороне этой выработки, то расстояние между силовыми и другими кабелями должно быть не менее 0,2 м.
Отношение радиуса R внутренней кривой изгиба кабелей (независимо от их напряжения) к наружному диаметру кабелей d при монтаже и эксплуатации должно быть не менее приведенных ниже значений.
Отношение R/d
Силовые одножильные с бумажной изоляцией, в свинцовой обо- 25
лочке, бронированные
Силовые многожильные, в свинцовой оболочке 15
Силовые и контрольные в ПВХ-ной или свинцовой оболочке, 10
бронированные
Силовые с резиновой и ПВХ-ной оболочках 6
Гибкие с резиновой и ПВХ-ной изоляцией и оболочкой 5
Соединение отрезков кабелей может быть выполнено неразъемным (вулканизацией) или разъемным (с помощью проходных или линейных штепсельных муфт). На гибких кабелях допускается не более четырех вулканизированных соединений на каждые 100 м. Если длина соединяемых отрезков кабелей не меньше 100 м, то допускается соединение их с помощью проходных взрывобезопасных муфт; допускается также соединение указанными муфтами отрезков кабеля независимо от их дины на время не более суток в случае их повреждения. Кабели следует соединять муфтами таким образом, чтобы растягивающие усилия не передавались на токоведущие жилы. Соединительные муфты должны быть подвешены. Соединение между собой отрезков гибкого кабеля, требующих частых разъединений в процессе работы, осуществляется с помощью линейных штепсельных разъемов. Контактные пальцы штепсельных разъемов при размыкании цепи должны оставаться без напряжения, для чего их монтируют на кабеле со стороны токоприемника. Соединение гибкого кабеля с бронированным может производиться только через зажимы аппаратов.
Не допускается размотка, переноска и прокладка кабелей без их предварительного подогрева в тех случаях, когда температура воздуха в течение 24 ч до начала монтажных работ была ниже следующих значений:
Кабели Температура °С
Силовые с бумажной изоляцией на напряжение до 35 кВ в свинцовой, алюминиевой
или винилитовой оболочке, бронированные и небронированные 0
Контрольные с изоляцией И1 пропитанной бумаги, в свинцовой оболочке, бронированные 0
Силовые с резиновой изоляцией:
в свинцовой оболочке, небронированные -20
в резиновой или ПВХ-ной оболочке -15
бронированные, с защитным покровом -7
Контрольные с резиновой и пластмассовой изоляцией:
в свинцовой оболочке, небронированные -20
в резиновой или ПВХ-ной оболочке -15
бронированные, с защитным покровом -7
Силовые с изоляцией из пропитанной нестекающей массой бумаги, в свинцовой
оболочке, бронированные +5
Силовые шахтные бронированные марки ЭВТ 0
Высоковольтные, гибкие, шланговые -20
Контрольные с пластмассовой изоляцией -10
При температурах ниже указанных кабель должен быть предварительно подогрет в теплом помещении или электрическим током. Основные данные по режиму подогревания трехжильных кабелей электрическим током приведены в табл. 3. Продолжительность подогрева кабеля в теплом помещении в зависимости от температуры воздуха в нем равна:
Температура воздуха, °С От+5 от+10 от+25 от+30
до+10 до+25 до+30 до+40
Продолжительность подогрева, сутки >3 1,5 ..3 1 .. 1,5 0,75 .. 1
После подогрева кабель должен быть проложен в течение 40 ... 45 мин.
При необходимости прокладки кабеля на отдельных участках по почве выработок, а также при временной укладке его на почву при ремонте выработки кабель должен быть защищен от механических повреждений прочными ограждениями из негорючих материалов.
Прокладку кабелей через перемычки вентиляционных и противопожарных дверей, а также вводы и выводы их из камер нужно осуществлять в трубах из негорючего материала. Отверстия труб с проложенными кабелями уплотняют глиной.
Для сохранения гибкого кабеля и возможности дальнейшего использования он должен быть растянут и подвешен. Запрещается держать кабели под напряжением в бухтах или восьмерках.
Для обеспечения высокого уровня R т шахтных кабелей в условиях эксплуатации монтаж концевых заделок и соединения бронированных кабелей с бумажной и пластмассовой изоляцией, а также концевые разделки шахтных гибких кабелей должны выполняться в соответствии с инструкциями, приведенными в ПБ.
Подключение кабелей к АД и аппаратам необходимо производить только посредством специальной арматуры (муфт). Кабели надо уплотнить резиновыми кольцами, имеющими концентрические надрезы, которые позволяют изменять внутренний диаметр кольца для кабелей с различными наружными диаметрами. Внутренний диаметр уплотняющего резинового кольца не должен превышать наружный диаметр кабеля более чем на 2 мм. Диаметральный зазор между расточкой вводного устройства и наружным диаметром уплотняющего кольца не должен превышать 1мм при наружном диаметре кольца до 20 мм, 2 мм - при диаметре от 20 до 60 мм и 3 мм - при диаметре свыше 60 мм. Уплотнение кабеля должно быть выполнено самым тщательным образом, так как от этого зависит взрывонепроницаемость вводного устройства.
. При разделке экранированных гибких кабелей электропроводящий экран должен быть снят до среза шланговой оболочки. Расстояние от оголенной жилы до электропроводящего слоя экрана по изоляции на каждой жиле должно быть не менее 50 мм при напряжении до 1000 В и не менее 100 мм при напряжении 1140 В. При применении бронированного кабеля допускается сухая разделка его жил. Свинцовая оболочка кабеля должна быть присоединена к внутреннему заземляющему зажиму коробки вводов. Закреплять кабель надо так, чтобы защитный шланг или защитная оболочка бронированных кабелей входила внутрь вводного устройства на длину не менее 5 мм при диаметре кабеля до 30 мм и 10 мм - при диаметре более 30мм.
Присоединяя отдельные жилы кабелей к контактным зажимам, нужно обратить внимание на правильность соединения н соответствующую затяжку крепежных элементов контактных зажимов, так как некачественно выполненное подсоединение может привести к перегреву и выходу из строя токоведущих частей контактных зажимов или к увеличению переходных сопротивлений в цепи управления. Кабели к токоведущим зажимам коробки вводов могут подсоединяться как с помощью кабельных наконечников, так и без них. В любом случае обязательно должны быть использованы контактные шайбы токоведущих шпилек. При транзитном питании АД каждая монтажная группа на токоведущих силовых шпильках должна быть использована для подключения только одной жилы кабеля. Следует обращать внимание на тщательную укладку проволочек кабеля между шпильками и корончатыми шайбами проходных зажимов вводной коробки.
При присоединении силовых жил кабеля должно быть соблюдено расстояние между оголенными частями этих жил и заземленными частями АД: не менее 20 мм при номинальном напряжении сети 380 или 660 В и не менее 50 мм при 1140 В.
Прием в эксплуатацию кабельной линии производят после измерения ее R„3. Измерение в сетях 127, 380 и 660В производят мегаомметром на напряжение 1000 В, а в сетях 1140 и 6000 В - мегаомметром на напряжение 2500 В. До и после измерения производят разрядку кабеля на землю и убеждаются в отсутствии на нем заряда. Измерениям должен предшествовать контроль рудничной атмосферы.
ПРЕИМУЩЕСТВА И НЕДОСТАТКИ ГЕРКОНОВ. ГЕРКОНЫ, ВЫПУСКАЕМЫЕ ОТЕЧЕСТВЕННОЙ ПРОМЫШЛЕННОСТЬЮ
1. Благодаря полной герметизации герконы обладают следующими преимуществами: возможность работы в условиях повышенной влажности, запыленности и т. п. при низком переходном сопротивлении в замкнутом положении (0,01—0,001 Ом) и малом падении напряжения на контактах;
2) простота конструкции, малые масса и габариты, что позволяет автоматизировать их производство и снизить стоимость изготовления;
3) высокое быстродействие (время срабатывания и отпускания 1—3 мс), что позволяет использовать герконы при частоте коммутаций до 1000 в секунду;
4) отсутствие трущихся деталей и сложных кинематических пар обеспечивает надежную работу герконов в течение 106—108 циклов;
5) высокая электрическая прочность междуконтактного промежутка;
6) гальваническая развязка цепей управления и коммутируемых цепей;
7) возможность управления как электромагнитным полем, так и полем постоянного магнита, что расширяет функциональные области применения герконов;
8) надежность работы в широком диапазоне температур (от —60 до +120 °С);
9) удобство согласования с современными изделиями микроэлектроники.
Возможность работы от кратковременных импульсов (но не менее 10 мкс) и малая энергия, потребляемая при таком управлении, позволяют широко использовать герконы как выходные (усилительные) элементы в серии полупроводниковых элементов «Логика И».
Герконы имеют следующие недостатки:
1) сравнительно низкая чувствительность по МДС управления;
2) восприимчивость к внешним магнитным полям, что требует специальных мер по защите от их воздействия;
3) хрупкость стеклянного баллона, чувствительность к ударам и вибрациям, что требует специальных мер по амортизации места установки герконов;
4) значительное время вибрации контактов, которое может составлять до половины времени срабатывания;
5) малая мощность коммутируемых цепей;
6) возможность самопроизвольного размыкания контактов при больших токах;
7) недопустимое размыкание и замыкание контактов при питании обмотки током низкой частоты;
8) значительный технологический разброс параметров. Преимущества и недостатки герконов предопределили их область применения.
Они широко используются в схемах автоматики и защиты как логические элементы, преобразователи неэлектрических величин в электрические, как электромеханические усилители сигналов между полупроводниковыми устройствами и силовыми электрическими аппаратами.
При уменьшении коммутируемого тока значение допустимого напряжения увеличивается (U —Ртах/1), но не должно превышать значения Umax, определяемого электрической прочностью рабочего зазора. При уменьшении напряжения коммутируемый ток увеличивается, но не должен быть больше значения Imax.
Параметры коммутируемых цепей приведены для чисто активной нагрузки. При смешанной нагрузке RL коммутационная способность геркона ухудшается и должна оговариваться заводом-изготовителем для данного значения постоянной времени нагрузки 7 — L/R. Если заданы параметры только для активной нагрузки, а цепь имеет смешанный характер, то для облегчения работы контакты реле следует шунтировать цепочкой R, С, параметры которой выбираются по рис.
ПОЛЯРИЗОВАННЫЕ РЕЛЕ
В поляризованных реле кроме основного потока, создаваемого катушкой, действует дополнительный поляризующий магнитный поток, который создается установленным в реле постоянным магнитом. Благодаря поляризующему потоку направление электромагнитного усилия, действующего на якорь, изменяется в зависимости от направления тока в катушке.
Контактные системы могут иметь различные исполнения (рис. 9.10). При подаче в обмотку реле тока такого направления, что поляризующий поток и поток катушки складываются у правого рабочего зазора (рис. 9.10, а), происходит размыкание левого контакта и замыкание правого.
При отключении тока снова замыкается левый контакт (однопозиционная настройка с преобладанием). На рис. 9.10,6 показана система с двухпозиционной настройкой. Здесь бК1 и бК2 — расстояние неподвижных контактов от осевой линии симметрии реле. Положение контактов зависит от полярности предыдущего импульса тока.
Якорь, укрепленный на плоской пружине (рис. 9.10, в), при обесточенной обмотке находится в нейтральном (среднем) положении. В зависимости от полярности тока катушки замыкается левый или правый контакт. После отключения тока якорь возвращается в нейтральное положение.
В практике наиболее широко распространены реле типа РП, допускающие частоту переключений до 200 в секунду при МДС срабатывания 1,5—2 А. Контактное нажатие при отсутствии тока в обмотке, длительный ток контактов 0,2 А, напряжение коммутируемой цепи 24 В.
Поляризованные электромагнитные реле имеют следующие преимущества перед нейтральными:
1. Выходной параметр (состояние контактной системы) зависит от полярности управляющего импульса, что расширяет функциональные возможности реле.
2. Реле могут управляться кратковременными импульсами тока.
3. Замкнутое состояние контактов сохраняется после окончания управляющего импульса, что позволяет использовать реле как элемент памяти.
4. После срабатывания не потребляется мощность для удержания якоря в притянутом положении.
5. Высокая чувствительность и высокий коэффициент усиления по мощности.
6. За счет положения упоров можно осуществлять однопозиционную, нейтральную и двухпозиционную настройку реле.
Развитие конструкции электромагнитных и поляризованных реле идет в направлении уменьшения массы, размеров, увеличения надежности и удобства монтажа на платах. Микроминиатюризация элементов автоматики привела к созданию электромагнитных реле с улучшенными массогабаритными характеристиками и повышенной долговечностью. Микроминиатюрные реле [9.6] имеют магнитные и контактные системы, располагаемые в герметичном кожухе, заполненном сжатым сухим чистым воздухом или с примесью гелия. Внутренние компоненты реле выполняются из материалов, которые в процессе длительной эксплуатации не выделяют паров газов.
1 — поляризованное (РПС-18); 2— клапанного типа с уравновешенным якорем с двойной герметизацией и двойными контактами; 3 и 4 — малогабаритные герметичные средней мощности на два и четыре переключения (РЭН-34 и РЭН-33); 5 — негерметичное средней мощности на шесть переключений; 6—8 — так называемые дистанционные переключатели на два, четыре и шесть переключений (РПС-32, РПС-34 и РПС-Зб); 9 — герметичное соленоидного типа с шестью группами на переключение (РЭС-39); 10 — герметичное с поворотным якорем (РЭС-8); 11— типа РЛ-1 с герконом; 12 — миниатюрное нейтральное с поворотным якорем (РЭС-49); 13 — малогабаритное клапанного типа (РЭС-15); 14 — малогабаритное клапанного типа с двойной герметизацией и двойными контактами (РЭС-34); 15— малогабаритное нейтральное с двумя группами на переключение (РЭС-34); 16 — реле с тремя замыкающими герконами (РЭС44); 17 — реле типа (РЭС-44) с герконом
Штыревые выводы легко впаиваются в монтажные плиты. Примером таких реле является РЭС-49. Масса реле 3,5 г, размеры 10Х5.2Х Х22.8 мм. Реле имеет один переключающий контакт с коммутируемым током 1 А при напряжении 36 В. На рис. 9.11, а представлена его магнитная система. Плоский якорь / вращается на оси 2, воздействуя на подвижный контакт. Неподвижные полюсы системы образованы пластинами 4. МДС создается обмоткой 3. На рис. 9.11,6 показана контактная система реле. Размыкающий контакт образуется пластиной /, на которую действует якорь, и контактом 2, замыкающий — пластиной / и контактом 3. На рис. 9.12 представлен внешний вид некоторых малогабаритных реле.
Полупроводниковые материалы
Полупроводники составляют обширную область материалов, отличающихся друг от друга большим многообразием электрических и физических свойств, а также большим многообразием химического состава, что и определяет различные назначения при их техническом использовании.
По химической природе современные полупроводниковые материалы можно разделить на следующие четыре главные группы:
1. Кристаллические полупроводниковые материалы, построенные из атомов или молекул одного элемента. Такими материалами являются широко используемые в данное время германий, кремний, селен, бор, карбид кремния и др.
2. Окисные кристаллические полупроводниковые материалы, т. е. материалы из окислов металлов. Главные из них: закись меди, окись цинка, окись кадмия, двуокись титана, окись никеля и др. В эту же группу входят материалы, изготовляемые на основе титаната бария, стронция, цинка, и другие неорганические соединения с различными малыми добавками.
3. Кристаллические полупроводниковые материалы на основе соединений атомов третьей и пятой групп системы элементов Менделеева. Примерами таких материалов являются антимониды индия, галлия и алюминия, т. е. соединения сурьмы с индием, галлием и алюминием. Они получили наименование интерметаллических соединений.
4. Кристаллические полупроводниковые материалы на основе соединений серы, селена и теллура с одной стороны и меди, кадмия и свинца с другой. Такие соединения называются соответственно: сульфидами, селенидами и теллуридами.
Все полупроводниковые материалы, как уже говорилось, могут быть распределены по кристаллической структуре на две группы. Одни материалы изготовляются в виде больших одиночных кристаллов (монокристаллов), из которых вырезают по определенным кристаллическим направлениям пластинки различных размеров для использования их в выпрямителях, усилителях, фотоэлементах.
Такие материалы составляют группу монокристаллических полупроводников. Наиболее распространенными монокристаллическими материалами являются германий и кремний. Разработаны методы изготовления монокристаллов и из карбида кремния, монокристаллы из интерметаллических соединений.
Другие полупроводниковые материалы представляют собой смесь множества малых кристалликов, беспорядочно спаянных друг с другом. Такие материалы называются поликристаллическими. Представителями поликристаллических полупроводниковых материалов являются селен и карбид кремния, а также материалы, изготовляемые из различных окислов методами керамической технологии.
Рассмотрим широко применяемые полупроводниковые материалы.
Германий- элемент четвертой группы периодической системы элементов Менделеева. Германий имеет ярко-серебристый цвет. Температура плавления германия 937,2° С. В природе он встречается часто, но в весьма малых количествах. Присутствие германия обнаружено в цинковых рудах и в золах разных углей. Основным источником получения германия является зола углей и отходы металлургических заводов.
Полученный в результате ряда химических операций слиток германия еще не представляет собой вещества, пригодного для изготовления из него полупроводниковых приборов. Он содержит нерастворимые примеси, не является еще монокристаллом и в него не введена легирующая примесь, обусловливающая необходимый вид электропроводности.
Для очистки слитка от нерастворимых примесей широко применяется метод зонной плавки. Этим методом могут быть удалены лишь те примеси, которые различно растворяются в данном твердом полупроводнике и в его расплаве.
Германий обладает большой твердостью, но чрезвычайно хрупок и раскалывается на мелкие куски при ударах. Однако при помощи алмазной пилы или других устройств его можно распилить на тонкие пластинки. Отечественной промышленностью изготовляется легированный германий с электронной электропроводностью различных марок с удельным сопротивлением от 0,003 до 45 ом х см и германий легированный с дырочной электропроводностью с удельным сопротивлением от 0,4 до 5,5 ом х см и выше. Удельное же сопротивление чистого германия при комнатной температуре ρ = 60 ом х см.
Германий как полупроводниковый материал широко используется не только для диодов и триодов, из него изготовляются мощныевыпрямители на большие токи, различные датчики, применяемые для измерения напряженности магнитного поля, термометры сопротивления для низких температур и др.
Кремний широко распространен в природе. Он, как и германий, является элементом четвертой группы системы элементов Менделеева и имеет такую же кристаллическую (кубическую) структуру. Полированный кремний приобретает металлический блеск стали.
Как и германий, кремний обладает хрупкостью. Его температура плавления значительно выше, чем у германия: 1423° С. Удельное сопротивление чистого кремния при комнатной температуре ρ = 3 х 105 ом-см.
Так как температура плавления кремния значительно выше, чем у германия, то тигель из графита заменяют кварцевым, так как графит при высокой температуре может реагировать с кремнием и образовывать карбид кремния. Кроме того, в расплавленный кремний могут попасть из графита загрязняющие примеси.
Промышленностью выпускается полупроводниковый легированный кремний с электронной электропроводностью (различных марок) с удельным сопротивлением от 0,01 до 35 ом х см и с дырочной электропроводностью тоже различных марок с удельным сопротивлением от 0,05 до 35 ом х см.
Кремний, как и германий, широко применяется для изготовления многочисленных полупроводниковых приборов. В кремниевом выпрямителе достигаются более высокие обратные напряжения и рабочая температура (130 - 180°С), чем в германиевых выпрямителях (80°С). Из кремния изготовляют точечные и плоскостные диоды и триоды, фотоэлементы и другие полупроводниковые приборы.
Кривые на рисунке показывают, что легирующие примеси оказывают огромное влияние на величину удельного сопротивления: у германия оно изменяется о г величины собственного сопротивления 60 ом х см до 10-4 ом х см, т. е. в 5 х 105 раз, а у кремния с 3 х 103 до 10-4 ом х см, т. е. в 3 х 109 раз.
В качестве материала для изготовления нелинейных сопротивлений особенно широкое применение получил поликристаллический материал - карбид кремния.
Из карбида кремния изготовляют вентильные разрядники для линий электропередачи — устройства, защищающие линию электропередачи от перенапряжений. В них диски из нелинейного полупроводника (карбида кремния) пропускают ток на землю под действием волн перенапряжений, возникающих в линии. В результате этого восстанавливается нормальная работа линии. При рабочем же напряжении линии сопротивления этих дисков возрастают и ток утечки с линии на землю прекращается.
Карбид кремния получают искусственно - путем тепловой обработки смеси кварцевого песка с углем при высокой температуре (2000°С).
В зависимости от введенных легирующих примесей образуются два основных вида карбида кремния: зеленый и черный. Они отличаются друг, от друга по типу электропроводности, а именно: зеленый карбид кремния обкидает электропроводностью n-типа, а черный — электропроводностью р-типа.
Для вентильных разрядников из карбида кремния изготовляются диски диаметром от 55 до 150 мм и высотой от 20 до 60 мм. В вентильном разряднике диски из карбида кремния соединяются последовательно друг с другом и с искровыми промежутками. Система, состоящая из дисков и искровых промежутков, сжимается спиральной пружиной. С помощью болта разрядник присоединяется к проводу линии электропередачи, а c другой стороны разрядник соединяется проводом с землей. Все детали разрядника помещены в фарфоровый корпус.
При нормальном напряжении на линии передачи ток с линии вентиль не пропускает. При повышенных же напряжениях (перенапряжениях), создаваемых атмосферным электричеством, или внутренних перенапряжениях искровые промежутки пробиваются и диски вентиля окажутся под высоким напряжением.
Сопротивление их резко упадет, что обеспечит утечку тока с линии на землю. Прошедший большой ток снизит напряжение до нормального и в дисках вентиля сопротивление возрастет. Вентиль окажется запертым, т. е. рабочий ток линии им пропускаться не будет.
Карбид кремния находит еще применение в полупроводниковых выпрямителях, работающих при больших рабочих температурах (до 500°С).
Первый пуск электродвигателя
Первый пробный пуск двигателя производится поле окончания все его испытаний и при их положительных результатах.
Пуск двигателя производится наладчиками в присутствии представителя электромонтажной организации. При этом пускаются несколько электродвигателей, входящих в одну электроустановку.
Перед пуском двигатель должен быть подготовлен и пуск проведен с осторожностью.
Необходимо проверить комплектность двигателя, состояние передачи от двигателя к механизму, наличие ее кожуха и кожуха вентилятора двигателя, наличие смазки в подшипниках, устройство заземления. Все виды защит двигателя должны быть испытаны и поставлены на минимальные уставки.
Перед пробным пуском двигателя нужно провернуть его и проверить свободный ход.
На случай отказа схемы управления двигателем при его отключении необходимо предусмотреть аварийное снятие напряжения ближайшим рубильником или автоматам.
При двигателе большой мощности или протяженном механизме необходимо расставить наблюдающих за работой двигателя и механизма.
Сначал двигатель пускается на 1-2 с. При этом проверяется направление вращения, работа механическоё части и поведение механизма.
При нормальном первом включении двигатель включается до разгона на полные обороты. При этом следят за током нагрузки по амперметру и по поведению двигателя, за состоянием защиты, работой щеток при их наличии, по звуку определяют, нет ли задевания вращающихся частей за неподвижные, нет ли вибрации, нагрева подшипников.
При всех замеченных неполадках двигатель немедленно отключается без предупреждения.
При удовлетворительных результатах пробных пусков двигатель включается на более продолжительное время на обкатку. При этом проверяют нагрев подшипников, обмоток, стали магнитопровода.
При пробных пусках двигатель-генераторов нужно разомкнуть цепь обмоток возбуждения генератора.
Защита кабелей, электродвигателей и трансформаторов
497. В подземных сетях напряжением выше 1200 В должна осуществляться защита линий, трансформаторов (передвижных подстанций) и электродвигателей от токов короткого замыкания и утечек (замыканий) на землю.
На строящихся и реконструируемых шахтах установка защиты от замыканий на землю должна быть также и на линиях, питающих ЦПП.
На отходящих линиях ЦПП и РПП защита от токов короткого замыкания и утечек (замыканий) на землю должна быть мгновенного действия (без выдержки времени).
На линиях, питающих ЦПП, допускается применение максимальной токовой защиты с ограниченно-зависимой выдержкой времени и отсечкой мгновенного действия, зона действия которой охватывает и сборные шины ЦПП, а также защиты от замыканий на землю с выдержкой времени до 0,7 с.
Для электродвигателей должны предусматриваться также защита от токов перегрузки и нулевая защита.
Во всех случаях отключения сети защитами допускается применение автоматического повторного включения (АПВ) однократного действия, а также применение устройств автоматического включения резерва (АВР) при условии применения аппаратуры с блокировками против подачи напряжения на линии и электроустановки при повреждении их изоляции относительно земли и коротком замыкании.
Выбор отключающих аппаратов, устройств релейной защиты, АПВ и АВР, а также расчет и проверка параметров срабатывания этих устройств должны производиться согласно требований к по выбору и проверке электрических аппаратов напряжением выше 1200 В".
Сроки оснащения подземных сетей напряжением выше 1200 В недостающими видами релейной защиты устанавливаются Госгортехнадзором России.
498. При напряжении до 1200 В должна осуществляться защита:
а) трансформаторов и каждого отходящего от них присоединения от токов короткого замыкания - автоматическими выключателями с максимальной токовой защитой - мгновенная, в пределах до 0,2 с;
б) электродвигателей и питающих их кабелей:
– от токов короткого замыкания: мгновенная или селективная, в пределах 0,2 с;
– от перегрузки, перегрева, опрокидывания и несостоявшегося пуска электродвигателей, работающих в режиме экстремальных перегрузок;
– нулевая;
– от включения напряжения при сниженном сопротивлении изоляции относительно земли;
в) искроопасных цепей, отходящих от вторичных обмоток понижающего трансформатора, встроенного в аппарат, от токов короткого замыкания;
г) электрической сети от опасных утечек тока на землю - автоматическими выключателями или одним отключающим аппаратом в комплексе с одним аппаратом защиты от утечек тока на всю электрически связанную сеть, подключенную к одному или группе параллельно работающих трансформаторов; при срабатывании аппарата защиты от утечек тока должна отключаться вся сеть, подключенная к указанному трансформатору, за исключением отрезка кабеля длиной не более 10 м, соединяющего трансформатор с общесетевым автоматическим выключателем.
Общая длина кабелей, присоединенных к одному или параллельно работающим трансформаторам, должна ограничиваться емкостью относительно земли величиной не более 1 мкФ на фазу.
При питании подземных электроприемников с поверхности через скважины допускается установка автоматического выключателя с аппаратом защиты от утечек тока под скважиной на расстоянии не более 10 м от нее. В этом случае при срабатывании аппарата защиты от утечек тока электроприемники на поверхности и кабель в скважине могут не отключаться, если на поверхности имеется устройство контроля изоляции сети, не влияющее на работу аппарата защиты, а электроприемники имеют непосредственное отношение к работе шахты (вентиляторы, лебедки и др.) и присоединяются посредством кабелей.
Защита от утечек тока может не применяться для цепей напряжением не более 42 В, цепей дистанционного управления и блокировки КРУ, а также цепей местного освещения передвижных подстанций, питающихся от встроенных осветительных трансформаторов, при условии металлического жесткого или гибкого наружного соединения их с корпусом подстанции, наличия выключателя в цепи освещения и надписи на светильниках "Вскрывать, отключив от сети".
Требование защиты от утечек тока не распространяется на искробезопасные системы.
Во всех случаях защитного отключения допускается однократное АПВ при условии наличия в КРУ максимальной токовой защиты и защиты от утечек (замыканий) на землю, имеющих блокировки против подачи напряжения на линии или электроустановки после их срабатывания.
Сроки оснащения защитой от токов перегрузки устанавливаются руководством отрасли по согласованию с Госгортехнадзором России.
499. Величина уставки тока срабатывания реле максимального тока автоматических выключателей, магнитных пускателей и станций управления, а также номинальный ток плавкой вставки предохранителей должны выбираться согласно требованиям к определению токов короткого замыкания, выбору и проверке уставок максимальной токовой защиты в сетях напряжением до 1200 В.
Запрещается применять предохранители без патронов и некалиброванные плавкие вставки.
Заземление
521. Заземлению подлежат металлические части электротехнических устройств, нормально не находящихся под напряжением, но которые могут оказаться под напряжением в случае повреждения изоляции, а также трубопроводы, сигнальные тросы и др., расположенные в выработках, где имеются электрические установки и проводки.
В шахтах, опасных по газу или пыли, для защиты от накопления статического электричества заземляются одиночные металлические воздухопроводы и пневматические вентиляторы.
Требования настоящего параграфа не распространяются на металлическую крепь, нетоковедущие рельсы, оболочки отсасывающих кабелей электровозной контактной откатки, а также на металлические устройства для подвески кабеля.
522. В подземных выработках шахт должна устраиваться общая сеть заземления, к которой присоединяются все объекты, подлежащие заземлению.
Заземление должно выполняться и контролироваться в соответствии с требованиями к устройству, осмотру и измерению сопротивления шахтных заземлений, установленными Госгортехнадзором России.
В подземных выработках шахт, находящихся в условиях многолетней мерзлоты, заземляющие устройства должны выполняться в соответствии с требованиями к устройству и эксплуатации защитного заземления электроустановок угольных шахт в условиях многолетней мерзлоты.
523. Общая сеть заземления должна создаваться путем непрерывного электрического соединения между собой всех металлических оболочек и заземляющих жил кабелей, независимо от величины напряжения, с присоединением их к главным и местным заземлителям.
Кроме того, у тяговой подстанции электровозной контактной откатки к общей сети заземления должны присоединяться токоведущие рельсы, используемые в качестве обратного провода контактной сети.
При наличии в шахте нескольких горизонтов к главным заземлителям должна присоединяться общая сеть заземления каждого горизонта. Для этого допускается использование брони силовых кабелей, проложенных между горизонтами. При отсутствии таких кабелей соединение общей сети горизонта с главным заземлителем должно производиться при помощи специально проложенного проводника.
524. Главныезаземлители в шахтах должны устраиваться в зумпфах или водосборниках.
В случае электроснабжения шахты с помощью кабелей, прокладываемых по скважинам, главные заземлители могут устраиваться на поверхности или в водосборниках шахты. При этом в качестве одного из главных заземлителей могут быть использованы обсадные трубы, которыми закреплены скважины.
Во всех случаях должно устраиваться не менее двух главных заземлителей, расположенных в различных местах, резервирующих друг друга на время осмотра, чистки или ремонта одного из них.
При отдельном электроснабжении блоков и отсутствии главного водоотлива главные заземлители должны располагаться в зумпфах или специальном колодце, заполненном водой.
525. Для местных заземлений должны устраиваться искусственные заземлители в штрековых водоотводных канавках или в других пригодных для этого местах.
В гидрошахтах в качестве местных заземлителей допускается использовать металлические желоба самотечного гидротранспорта угля.
Для местных заземлителей может использоваться металлическая рамная или анкерная крепь в соответствии с п.522.
526. Каждая кабельная муфта с металлическим корпусом, кроме соединителей напряжения на гибких кабелях, питающих передвижные машины, должна иметь местное заземление и соединяться с общей сетью заземления шахты.
Для сетей стационарного освещения допускается устраивать местное заземление не для каждой муфты или светильника, а через каждые 100 м кабельной сети.
Для аппаратуры и кабельных муфт телефонной связи на участке сети с кабелями без брони допускается местное заземление без присоединения к общей сети заземления.
При откатке контактными электровозами заземление электроустановок постоянного тока, находящихся в непосредственной близости от рельсов, должно осуществляться путем присоединения заземляемой конструкции к рельсам, используемым в качестве обратного провода контактной сети.
527. Заземление корпусов передвижных машин, забойных конвейеров, аппаратов, установленных в призабойном пространстве, и светильников, подсоединенных к сети гибкими кабелями, а также электрооборудования, установленного на платформах, перемещающихся по рельсам (за исключением передвижных подстанций), должно осуществляться посредством соединения их с общей сетью заземления при помощи заземляющих жил питающих кабелей.
Заземляющая жила с обеих сторон должна присоединяться к внутренним заземляющим зажимам в кабельных муфтах и вводных устройствах.
Для передвижных машин и забойных конвейеров должен предусматриваться непрерывный контроль заземления.
В шахтах, опасных по газу или пыли, должна обеспечиваться искробезопасность схем непрерывного контроля заземления. При использовании для управления машинами заземляющей жилы силового питающего кабеля допускается обеспечивать искробезопасность только перед подачей напряжения на машины.
528. Общее переходное сопротивление сети заземления, измеренное у любых заземлителей, не должно превышать 2 Ом.
Парашюты Шахтные ПТКА
Площадки качающиеся предназначены для соединения рельсовых путей, шахтных клетей с рельсами приемных площадок вертикальных клетевых подъемов, оборудованных жесткими проводниками. ПК используются для соединения без фиксации по высоте, при рабочих углах поворота площадки от +9° (верхний) до -8° (нижний). Площадки изготавливаются 24 типоразмеров с электрическим, пневматическим и гидравлическим приводом и работают в условиях как принудительной, так и самостоятельной откатки.
Преимущественная область применения: приемные площадки надшахтных зданий, околоствольных дворов и промежуточных горизонтов в сочетании с унифицированными, типажными и индивидуальными клетями, оборудованными жесткими или роликовыми направляющими при боковом или лобовом расположении проводников.
Технические характеристики
Параметр
ПТКА 6,3
ПТКА 12,5
ПТКА 20
ПТКА 25
ПТКА 30
Номинальная статистическая нагрузка, кН
63
125
200
250
300
Диаметр тормозного каната, мм
25,5
30,5
35,0
40,0
45,0
Масса парашюта (без блочной муфты), т
0,9
1,2
2,3
2,6
2,45
Масса парашюта с блочной муфтой (без учета масс тормозных канатов, балок для их крепления, запасных частей и приспособлений), т
1,3
1,6
3,3
3,6
3,15
Открытая электрическая проводка
НАЗНАЧЕНИЕ:
Как и любая проводка предназначена для передачи электроэнергии от квартирного щитка к потребителям (холодильник, телевизор, лампочки и т. п.)
УСТРОЙСТВО:
Представляет собой провода и/или кабели, проложенные непосредственно по основанию стен, потолков, по строительным конструкциям.
Провода могут крепиться к стене с помощью специальных скоб на гвоздях, дюбелях, приклеиванием и т. п. Могут быть уложены в короба (кабель каналы), плинтусы, гофротрубы, лотки и т. п.
ПРИНЦИП ДЕЙСТВИЯ:
Такую проводку относительно легко монтировать и в дальнейшем обслуживать.
Однако, кабель каналы, плинтусы, и другое - довольно таки не дешево. По очень грубым прикидкам - сколько потратите на провода, розетки, выключатели, столько же и на пластиковую арматуру (короба, трубы, соединители, уголки и т. п.)
Также, она сильно влияет на внешний вид всего помещения. Малейшая неаккуратность сразу заметна.
Обслуживание трансформаторов тока
Общие сведения. Трансформаторы тока применяются в схемах измерений и учета электрической энергии. Они являются также элементами устройств релейной защиты и автоматики. Через них релейные схемы получают информацию о состоянии электрических цепей высокого напряжения.
При помощи трансформаторов тока первичный ток уменьшают до значений, наиболее удобных для питания измерительных приборов и реле. Вторичные токи принимают равными 1 или 5 А.
Первичная обмотка трансформатора тока включается в рассечку фазы электрической цепи. От первичной обмотки, находящейся под высоким напряжением, вторичная обмотка надежно изолируется, что гарантирует безопасное обслуживание вторичных цепей и подключенных к ним приборов и реле.
Токовые цепи нагрузки подключаются к зажимам вторичных обмоток трансформаторов тока последовательно. Но даже при последовательном соединении сопротивление вторичной нагрузки невелико. Поэтому считают, что рабочий режим трансформаторов тока близок к режиму короткого замыкания. Размыкание вторичной обмотки приводит к исчезновению размагничивающего действия вторичного тока, и тогда весь первичный ток становится током намагничивания. В этом режиме резко возрастает магнитная индукция в стали магнитопровода, во много раз увеличиваются активные потери в стали, что приводит к ее перегреву, обгоранию изоляции обмотки и в конечном счете к повреждению трансформатора тока.
Кроме того, большой магнитный поток наводит во вторичной обмотке значительную ЭДС, которая может достигнуть десятков киловольт, что представляет опасность как для обслуживающего персонала, так и для изоляции вторичных цепей. В связи с указанным вторичные обмотки трансформаторов тока должны быть всегда замкнуты на реле, приборы или закорочены на испытательных зажимах. При необходимости замены реле или прибора предварительно должна устанавливаться шунтирующая их перемычка. Переносные измерительные приборы подключаются к вторичным цепям работающих трансформаторов тока с помощью разъемных испытательных зажимов или испытательных блоков, позволяющих производить включение и отключение приборов без разрыва вторичной цепи.
Основной мерой безопасного производства работ во вторичных токовых цепях в случае повреждения изоляции и попадания на вторичную цепь высокого напряжения является заземление одного из концов каждой вторичной обмотки трансформатора тока. Такое заземление обычно производится на месте их установки.
В сложных схемах релейной защиты (например, в схеме токовой дифференциальной защиты шин) заземление допускается производить только в одной точке схемы (на панели защиты).
Особенности конструкции. Трансформаторы тока выпускаются для наружной установки, для внутренней установки, встроенные в проходные вводы силовых трансформаторов и баковых выключателей, накладные - надевающиеся сверху на вводы силовых трансформаторов.
У встроенных и накладных трансформаторов тока первичной обмоткой служит токоведущий стержень ввода.
В зависимости от рода установки и класса рабочего напряжения первичной обмотки трансформаторы тока выполняются с литой эпоксидной изоляцией, с бумажно-масляной изоляцией, с воздушной изоляцией.
Трансформаторы тока с фарфоровой изоляцией (серии ТПФ) за последние годы вытесняются из эксплуатации трансформаторами тока с литой эпоксидной изоляцией. Фарфоровые корпуса трансформаторов тока с бумажно-масляной изоляцией серий ТФН (новое обозначение серии ТФЗМ), ТРН (ТФРМ) заполняются маслом. Сверху на фарфоровом корпусе устанавливается металлический маслорасширитель, воспринимающий температурные колебания объема масла. Внутренняя полость маслорасширителя сообщается с атмосферой через силикагелевый воздухоосушитель.
При рабочем напряжении 330 кВ и выше трансформаторы тока изготовляются в виде двух ступеней (двух каскадов), что позволяет выполнять изоляцию каждой ступени на половину фазного напряжения.
Обслуживание трансформаторов тока заключается в надзоре за ними и выявлении видимых неисправностей, при этом контролируется нагрузка первичной цепи и устанавливается, нет ли перегрузки. Перегрузка трансформаторов тока по току первичной обмотки допускается до 20%.
Очень важно следить за нагревом и состоянием контактов, через которые проходит первичный ток. На практике были случаи нагрева контактных шпилек у маслонаполненных трансформаторов тока. И если при этом на сильно нагретый контакт попадало масло, то оно воспламенялось, и возникал пожар.
При осмотре обращают внимание на отсутствие признаков внешних повреждений (обгорание контактов, трещин в фарфоре), так как трансформаторы тока подвержены термическим и динамическим воздействиям при прохождении через них сквозных токов короткого замыкания.
Важное значение имеет состояние внешней изоляции трансформаторов тока. Более 50% случаев повреждений трансформаторов тока с литой изоляцией происходит в результате перекрытий по загрязненной и увлажненной поверхности изоляторов при воздействии коммутационных и грозовых перенапряжений.
У маслонаполненных трансформаторов тока проверяют уровень масла по маслоуказателю, отсутствие подтеков масла, цвет силикагеля в воздухоосушителе (силикагель с зернами розовой окраски должен заменяться).
При обнаружении дефектов токоведущих частей и изоляции трансформатор тока вместе с присоединением, на котором установлен, должен быть выведен в ремонт, подвергнут тщательному осмотру и испытанию.
Монтаж двигателей с фазным ротором
Монтаж асинхронных электродвигателей с фазным ротором производится аналогично монтажу электродвигателей с короткозамкнутым ротором, но при этом дополнительно выполняются работы по монтажу пусковых реостатов, проверке щеток и механизма подъемных щеток.
Монтаж пускового реостата
Перед монтажом пускового реостата производится проверка надежности контактов отдельных выводов путем подтяжки крепящих гаек и проверки прозвонкой целости всех цепей. После этого замеряется величина сопротивления изоляции.
Если величина сопротивления изоляции меньше 1 мом, устанавливается причина ее понижения путем проверки целости изоляционных деталей и отсутствия касания выводных концов о корпус. Причиной понижения величины сопротивления изоляции может быть и отсыревание изолирующей плиты, на которой расположены неподвижные контакты, или нарушение изоляции траверсы подвижных контактов. При необходимости производится сушка указанных изолирующих деталей в сушильном шкафу или при помощи электрических ламп.
Подготовленный к монтажу пусковой реостат устанавливают на месте, указанном в проекте. Для удобства эксплуатации реостаты располагают вблизи пусковой аппаратуры и таким образом, чтобы было видно, как происходит разворот электродвигателя и механизма.
Расстояние от пола или площадки обслуживания до рукоятки реостата принимается 800 - 1 000 мм. Для лучшего охлаждения оставляется зазор в 50 - 100 мм между реостатом и полом и т. п.
Корпус реостата заземляется. В реостат с масляным охлаждением заливается трансформаторное масло до установленного уровня. Электрическая прочность заливаемого масла не нормируется, но обычно используется, сухое масло.
Проверка контактных колец и обмотки ротора
Перед монтажом (или при разборке электродвигателя с фазным ротором, если она производится) проверяется состояние обмотки ротора, выводных концов от нее, контактных колец и щеток. Проверяется надежность контактов, к которым крепятся выводные концы и токоподводы к щеткам, с проверкой мегомметром сопротивления изоляции и целости (отсутствие обрыва) цепи.
Величина сопротивления изоляции обмоток ротора и колец не должна быть ниже 0,5 Мом. Если величина сопротивления изоляции меньше указанной, устанавливается причина ее понижения, проверяется отдельно сопротивление изоляции обмоток и каждого кольца. Причиной понижения изоляции может быть отсыревание изоляции обмоток или колец. В этом случае производится сушка изоляции. Иногда сушкой не удается добиться улучшения состояния изоляции колец из-за повреждения изоляции. В этом случае снимаются кольца и устраняются причины, снизившие сопротивление изоляции.
Пуск электродвигателей
Перед пуском электродвигателей с фазным ротором проверка и подготовка к пуску производится так же, как и у электродвигателей с короткозамкнутым ротором. Дополнительно к этому проверяется состояние пускового реостата, щеток, сопротивления изоляции обмотки ротора и проводов или кабелей, соединяющих щетки с пусковым реостатом, а также работа механизма закорачивания колец и подъема щеток. После проверки и устранения замеченных недостатков производится пуск электродвигателя вначале вхолостую, а затем под нагрузкой.
Пуск в ход электродвигателя с фазным ротором производится в следующей последовательности:
проверяется и устанавливается в положение "пуск" рукоятка пускового реостата, при этом реостат полностью введен (движок находится на контактах, соответствующих наибольшему сопротивлению),
проверяется наложение щеток на кольца и положение "пуск" механизма для закорачивания колец,
включается пускатель цепи статора и по мере разворачивания ротора электродвигателя медленно передвигается ручка пускового реостата до крайнего положения, соответствующего наименьшему сопротивлению,
проверяется работа щеток, которые не должны сильно искрить,
поворотом рукоятки механизма закорачиваются кольца и поднимаются щетки. При чрезмерном искрении необходимо протереть кольца чистой тряпкой без ворса или отшлифовать их стеклянной шкуркой.
Если искрение остается значительным, электродвигатель останавливают и производят протирку щеток, протягивая при этом полоски стеклянной бумаги между кольцами и щетками. У правильно притертых щеток вся поверхность плотно прилегает к кольцу.
После каждой остановки электродвигателя с фазным ротором ручка пускового реостата устанавливается в положение "пуск". При опробовании вхолостую и под нагрузкой проверяется направление вращения, вибрация, нагрев подшипников и обмоток.
Материалы для изготовления плавких вставок
Плавкие вставки изготовляются из меди, цинка, свинца или серебра. В современных наиболее совершенных предохранителях отдают предпочтение медным вставкам с оловянным растворителем. Достаточно распространены также цинковые вставки. Медные вставки для предохранителей наиболее удобны, просты и дешевы. Улучшение их характеристик достигается наплавлением оловянного шарика в определенном месте, примерно в середине вставки. Олово плавится при температуре 232°, значительно меньшей, чем температура плавления меди, и растворяет медь вставки в месте соприкосновения с нею. Появляющаяся при этом дуга уже расплавляет всю вставку и гасится. Цепь тока оказывается отключенной.
Таким образом, наплавление оловянного шарика приводит к следующему:
Во-первых, медные вставки начинают реагировать с выдержкой времени на столь малые перегрузки, на которые они при отсутствии растворителя вовсе не реагировали бы.
Во-вторых, при одной и той же достаточно большой температуре, вставки с растворителем реагируют много быстрее, чем вставки без растворителя.
Применение оловянного растворителя позволяет иметь надежные и дешевые медные вставки, работающие при сравнительно низкой эксплуатационной температуре, имеющие относительно малый объем и вес металла, что благоприятствует коммутационной способности предохранителя и в то же время обладающие большим быстродействием при больших перегрузках и реагирующие с выдержкой времени на относительно малые перегрузки.
Цинк так же, достаточно часто, используется для изготовления плавких вставок. Вставки из цинка более устойчивы против коррозии. Поэтому, несмотря на относительно малую температуру плавления, для них, вообще говоря, можно было бы допустить такую же предельную эксплуатационную температуру, как для меди, и конструировать вставки с меньшим сечением. Однако электрическое сопротивление цинка примерно в 3,4 раза больше, чем у меди. Чтобы сохранить ту же температуру, надо уменьшить потери энергии в ней, соответственно увеличив ее сечение. Вставка получается значительно более массивной. Это при прочих равных условиях приводит к понижению коммутационной способности предохранителя.
Магнитные пускатели
Магнитные пускатели предназначены, главным образом, для дистанционного управления трехфазными асинхронными электродвигателями с короткозамкнутым ротором, а именно:
- для пуска непосредственным подключением к сети и остановки (отключения) электродвигателя (нереверсивные пускатели),
- для пуска, остановки и реверса электродвигателя (реверсивные пускатели). Кроме этого, пускатели в исполнении с тепловым реле осуществляют также защиту управляемых электродвигателей от перегрузок недопустимой продолжительности.
Магнитные пускатели открытого исполнения предназначены для установки на панелях, в закрытых шкафах и других местах, защищенных от попадания пыли и посторонних предметов.
Магнитные пускатели защищенного исполнения предназначены для для установки внутри помещений, в которых окружающая среда не содержит значительного количества пыли.
Магнитные пускатели пылебрызгонепроницаемого исполнения предназначены как для внутренних, так и для наружных установок в местах, защищенных от солнечных лучей и от дождя (под навесом).
Магнитный пускатель серии ПМЛ
Устройство магнитного пускателя
Магнитные пускатели имеют магнитную систему, состоящую из якоря и сердечника и заключенную в пластмассовый корпус. На сердечнике помещена втягивающая катушка. По направляющим верхней части пускателя скользит траверса, на которой собраны якорь магнитной системы и мостики главных и блокировочных контактов с пружинами.
Принцип работы пускателя прост: при подаче напряжения на катушку якорь притягивается к сердечнику, нормально-открытые контакты замыкаются, нормально-закрытые размыкаются. При отключении пускателя происходит обратная картина: под действием возвратных пружин подвижные части возвращаются в исходное положение, при этом главные контакты и нормально-открытые блокконтакты размыкаются, нормально-закрытые блокконтакты замыкаются.
Реверсивные магнитные пускатели представляют собой два обычных пускателя, укрепленных на общей основании (панели) и имеющем электрические соединения, обеспечивающие электрическую блокировку через нормально-замкнутые блокировочные контакты обоих пускателей, которая предотвращает включение одного магнитного пускателя при включенном другом.
Самые распространенные схемы включения нереверсивного и реверсивного магнитного пускателя смотрите здесь: Схемы включения магнитным пускателем асинхронного электродвигателя. В этих схемах предусмотрена нулевая защита с помощью нормально-открытого контакта пускателя, предотвращающая самопроизвольное включение пускателя при внезапном появлении напряжения.
Реверсивные пускатели могут также иметь механическую блокировку, которая располагается под основание (панелью) пускателя и также служит для предотвращения одновременного включения двух магнитных пускателей. При электрической блокировке через нормально-замкнутые контакты самого пускателя (что предусмотрено его внутренними соединениями) реверсивные пускатели надежно работают и без механической блокировки.
Реверсивный магнитный пускатель
Реверс электродвигателя при помощи реверсивного пускателя осуществляется через предварительную остановку, т.е. по схеме: отключение вращающегося двигателя - полная остановка - включение на обратное вращения. В этом случает пускатель может управлять электродвигателем соответствующей мощности.
В случае применения реверсирования или торможения электродвигателя противовключением его мощность должна быть выбрана ниже в 1,5 - 2 раза максимальной коммутационной мощности пускателя, что определяется состоянием контактов, т.е. их износоустойчивостью, при работе в применяемом режиме. В этом режиме пускатель должен работать без механической блокировки. При этом электрическая блокировка через нормально-замкнутые контакты магнитного пускателя обязательна.
Магнитные пускатели защищенного и пылебрызгонепроницаемого исполнений имеют оболочку. Оболочка пускателя пылебрызгонепроницаемого исполнения имеет специальные резиновые уплотнения для предотвращения попадания внутрь пускателя пыли и водяных брызг. Входные отверстия в оболочку закрыты специальными пробами с применением уплотнений.
Тепловые реле
Ряд магнитных пускателей комплектуется тепловыми реле, которые осуществляют тепловую защиту электродвигателя о перегрузок недопустимой продолжительности. Регулировка тока уставки реле - плавная и производится регулятором уставки путем поворота его отверткой. Здесь смотрите про устройство тепловых реле. В случае невозможности осуществления тепловой защиты в повторно-краковременном режиме работы следует применять магнитные пускатели без теплового реле. От коротких замыканий тепловые реле не защищают.
Монтаж магнитных пускателей
Для надежной работы монтаж магнитных пускателей должен производится на ровной, жестко укрепленной вертикальной поверхности. Пускатели с тепловым реле рекомендуется устанавливать при наименьшей разности температуры воздуха, окружающего пускатель и электродвигатель.
Что бы не допустить ложных срабатываний не рекомендуется устанавливать пускатели с тепловым реле в местах подверженных ударам, резким толчкам и сильной тряске (например, на общей панели с электромагнитными аппаратами на номинальные токи более 150 А), так как при включении они создают большие удары и сотрясения.
Для уменьшения влияния на работу теплового реле дополнительного нагрева от посторонних источников тепла и соблюдении требования о недопустимости температуры окружающего пускатель воздуха более 40о рекомендуется не размещать рядом с магнитными пускателями аппараты теплового действия (реостаты и т.д.) и не устанавливать их с тепловым реле в верхних, наиболее нагреваемых частях шкафов.
При присоединении к контактному зажиму магнитного пускателя одного проводника его конец должен быть загнут в кольцеобразную или П-образную форму (для предотвращения перекоса пружинных шайб этого зажима). При присоединении к зажиму двух проводников примерно равного сечения их концы должны быть прямыми и распологаться по обе стороны от зажимного винта.
Присоединяемые концы медных проводников должны быть залужены. Концы многожильных проводников перед лужением должны быть скручены. В случае присоединения алюминиевых проводов их концы должны быть зачищены мелким надфилем под слоем смазки ЦИАТИМ или технического вазелина и дополнительно покрыты после зачистки кварцевазилиновой или цинко-вазелиновой пастой. Контакты и подвижные части магнитного пускателя смазывать нельзя.
Перед пуском магнитного пускателя необходимо произвести его наружный осмотр и убедится в исправности всех его частей, а также в свободном передвижении всех подвижных частей (от руки), сверить номинальное напряжение катушки пускателя с напряжением, подаваемым на катушку, убедится, что все электрические соединения выполнены по схеме.
При использовании пускателей в реверсивных режимах, нажав от руки подвижную траверсу до момента соприкосновения (начало замыкания) главных контактов, проверить наличие раствора нормально-замкнутых контактов, что необходимо для надежной работы электрической блокировки.
У включенного магнитного пускателя допускается небольшое гудение электромагнита, характерное для шихтованных магнитных систем переменного тока.
Магнитный пускатель серии ПМ12
Уход за магнитными пускателями в процессе эксплуатации
Уход за пускателями должен заключаться, прежде всего, в защите пускателя и теплового реле от пыли, грязи и влаги. Необходимо следить, чтобы винты контактных зажимов были плотно затянуты. Надо также проверять состояние контактов.
Контакты современных магнитных пускателей особого ухода не требуют. Срок износа контактов зависит от условий и режима работы пускателя. Зачистка контактов пускателей не рекомендуется, так как удаление контактного материала при зачистке приводит к уменьшению срока службы контактов. Только в отдельных случаях сильного оплавления контактов при отключении аварийного режима электродвигателя допускается их зачистка мелким надфилем.
При появлении после длительной эксплуатации магнитного пускателя гудения, носящего, характер дребезжания, необходимо чистой ветошью очистить от грязи рабочие поверхности электромагнита, проверить наличие воздушного зазора, а также проверить отсутствие заеданий подвижных частей и трещин на короткозамкнутых витках, расположенных на сердечнике.
При разборке и последующей сборке магнитного пускателя следует сохранять взаимное расположение якоря и сердечника, бывшее до разборки, так как их приработавшиеся поверхности способствуют устранению гудения. При разборках магнитных пускателей необходимо чистой и сухой ветошью протирать пыль с внутренних и наружных поверхностей пластмассовых деталей пускателя.
КРУВ-6Д ВМП
КРУ предназначено для приема и распределения электрической энергии напряжением 6 кВ частотой 50 Гц, для защиты сетей с изолированной нейтралью и управления подземными токоприемниками угольных шахт, опасных по газу и пыли.
КРУ выполнено взрывонепроницаемым с искробезопасными цепями дистанционного управления, имеет взрывобезопасный уровень взрывозащиты и маркировку по взрывозащите РВ 4В.
КРУ расчитано на работу в сетях с изолированной нейтралью.
КРУ может эксплуатироваться в условиях, нормированных для исполнения УХЛ категории размещения 5 по ГОСТ 15150 и ГОСТ 15543.1. При этом:
а) высота над уровнем моря - не более 1000 м;
б) рабочее положение в пространстве - вертикальное, допустимое
отклонение - 0,17 рад (10°) в любую сторону;
в) окружающая среда не содержит едких паров и газов в
концентрациях, разрушающих металл и изоляцию;
г) группа условий эксплуатации - Ml по ГОСТ 17516.1;
д) КРУ должно быть защищено от прямого попадания воды.
Технические данные
Номинальное напряжение, кВ
6
Номинальный ток, А:
сборных шин
вводных и секционных шкафов КРУ
630
100, 160, 200
шкафов КРУ отходящих присоединений
20, 31.5, 40, 50, 80,100,160, 200,315,400
Частота, Гц
50
Мощность отключения, MB-A
100
Номинальный ток отключения, кА
10
Нормированные параметры тока включения, кА:
наибольший пик
начальное действующее значение периодической составляющей
25
10
Показатель термической стойкости, кАхс
300
Верхнее рабочее значение температуры воздуха при эксплуатации, °С
+35
Нижнее рабочее значение температуры воздуха при эксплуатации, °С
-10
Исполнение вывода отходящих линий (кабельный, воздушный, шинопровод)
кабельный
Ток электродинамической стойкост,. кА
25
Ток термической стойкости, кА
10
Время протекания тока термической стойкости, с
1
Время протекания тока термической стойкости (без встроенных трансформаторов тока), с
3
Механический ресурс (механическая износостойкость), циклов «включение-отключение»:
выключателя
разъединителей
30000
2000
Коммутационный ресурс (коммутационная износостойкость) контактов и дугогасящих устройств выключателя, циклов «включение-отключение» при 400 А
25000
Наибольшее допустимое без осмотра число операций отключения номинального тока отключения
10
Частота включения, вкл./ч
1
Потребляемая электроэнергия за сутки, кВт / ч
не более 1,5
Вид и уровень взрывозащиты:
шкафа
пульта дистанционного управления ПДУ 1, при условии присоединения их отдельным кабелем
РВ 4В Иа
РО Иа
Степень защиты оболочки
IP54
Масса шкафа КРУ, кг
не более 1150
Масса пульта дистанционного управления, кг
не более 9,3
КРУ нормально работает при колебании напряжения в сети
от 85% до 115%Uн0M
КРУ обеспечивает:
- оперативное местное включение и отключение (с помощью кнопок);
- оперативное ручное включение;
- оперативное дистанционное включение и отключение (при сечении жил управления не менее 2,5 мм и длине до 10 км (сопротивление жилы до 80 Ом);
- отключение отходящих присоединений для производства осмотров ремонтов;
- возможность подключения контактов реле внешних дополнительных устройств защиты и контроля (защиты от замыканий на землю, защиты от несимметричных режимов, газовой защиты, аппаратуры контроля воздуха) и устройств телемеханики и технологической автоматики;
- электрическую блокировку против подачи напряжения на отходящее присоединение с сопротивлением утечки на землю ниже 360 кОм, а также на отходящее присоединение, отключенное защитой от токов короткого замыкания;
- блокировку против повторного включения при отказе механизма, удерживающего выключатель во включенном положении;
- функциональную проверку исправности максимальной токовой защиты на контрольной уставке 5 - 9 А, блокировочного реле утечки и защиты от однофазных замыканий на землю;
- контроль и индикацию величины напряжения и тока в силовых цепях,
мощности, потребляемой нагрузкой, технический учет потребленной электроэнергии;
- местную (механическую и электрическую) и дистанционную (в пульте дистанционного управления) сигнализацию о включенном и отключенном положениях выключателя;
- индикацию текущего времени;
- сигнализацию и индикацию времени срабатывания блокировочного реле утечки;
- сигнализацию и индикацию времени срабатывания защиты от токов короткого замыкания;
- сигнализацию и индикацию времени срабатывания защиты от перегрузки;
- сигнализацию и индикацию времени срабатывания защиты от однофазных замыканий на землю;
- возможность отключения (при необходимости) устройств защиты минимального напряжения;
- контроль за состоянием и управление КРУ с компьютеризированного места диспетчера (ПО Power con Px4 server).
КРУ имеет следующие виды защит и автоматики:
- защиту от токов перегрузки и защиту асинхронных двигателей с короткозамкнутым ротором от пусковых токов недопустимой продолжительности;
- защиту от токов короткого замыкания;
- направленную защиту отходящего присоединения от однофазных замыканий на землю;
- защиту минимального напряжения;
- однократное автоматическое повторное включение (АПВ) и автоматическое включение резерва (АВР);
- искробезопасность выходных цепей дистанционного управления при подключении пульта дистанционного управления по отдельному кабелю, длиной до 10 км и сечением жил 2,5 мм ;
- защиту от потери управляемости при замыкании или обрыве жил дистанционного управления;
- защиту от самовключений при повышении напряжения.
КОНСТРУКЦИЯ РУБИЛЬНИКОВ И ПЕРЕКЛЮЧАТЕЛЕЙ
Рубильники выпускаются в одно-, двух- и трехполюсных исполнениях. На рис. 15.2 изображен трехполюсный рубильник с центральным рычажным приводом 1 и дугогасительной камерой 2. Ножи 3 всех трех полюсов соединены изоляционным валиком, на который действует тяга рычажного привода. Рукоятка привода монтируется на лицевой стенке шкафа распредустройства. Такая конструкция обеспечивает безопасность обслуживающего персонала.
Качество рубильников и переключателей в значительной степени определяется контактным соединением ножа и контактных стоек. В современных аппаратах преимущественно применяется линейный контакт (§ 3.4), обладающий меньшим переходным сопротивлением, чем плоский. Контактное нажатие обеспечивается с помощью стальных пружин.
В рубильнике на рис. 15.1 нажатие в стойке 3 создается с помощью пружины в виде разрезанного кольца 4, концы которого действуют на эластичные губки. Нажатие губок в шарнирной стойке 2 осуществляется пружинами в виде выпуклых шайб 5. При токе, большем 100 А, устанавливается несколько параллельных контактных пар.
В пакетном выключателе или переключателе каждый коммутируемый полюс конструктивно оформлен в виде отдельного элемента — пакета. На рис. 15 3 аппарат имеет три полюса (три пакета), а на рис. 15.4 — два полюса. Число пакетов в выключателе серии ПКВ может достигать 8.
Пакетный выключатель ПВМ (рис 15.3) состоит из отдельных связанных вместе пакетов 5 и приводного механизма 4. Каждый полюс имеет два разрыва.
Неподвижные контакты / выполнены в виде массивных пластин из латуни. Подвижный контакт 2 насажен на квадратный изолированный вал выключателя и имеет вращательное движение. Нажатие контактов создается за счет упругих свойств губок подвижного контакта 2. К подвижному контакту прикреплены две щечки 3 из фибровых пластин. Расстояние между щечками несколько больше толщины неподвижного контакта, что позволяет подвижному контакту свободно вращаться внутри пакета. Подвижный контакт перемещается с помощью приводного механизма. При вращении рукоятки сначала заводится пружина, а затем эта пружина сообщает необходимую скорость контакту. Такой привод работает недостаточно надежно.
При расхождении контактов дуга загорается в двух разрывах, что обеспечивает надежное гашение дуги переменного тока за счет околокатодной электрической прочности. Дуга гаснет при первом прохождении переменного тока через нуль.
Гашение дуги постоянного тока обеспечивается за счет ее горения в пространстве между фибровыми щечками. При соприкосновении дуги с фибровыми стенками из них выделяется газ. Поскольку внутренняя полость пакета достаточно герметична, внутри пакета повышается давление. Это ведет к подъему вольт-амперной характеристики и гашению дуги (§ 4.2). Однофазные цепи должны отключаться двухполюсным выключателем.
Недостатками выключателя ПВМ являются невысокая износостойкость (до 20-103 циклов) и недостаточная надежность механизма привода.
Более совершенен пакетный кулачковый выключатель серии ПКВ (рис. 15.4). На валу / укреплены кулачки 2 (по одному на пакет). Каждая цепь имеет два разрыва, образуемые мостиками 3 и контактами 4, При вращении вала кулачок поворачивается и в его углубление попадает шток 5. При этом цепь замыкается. Нажатие контактов создается стальной пружиной 6. Для повышения износостойкости используются металлокерамические контакты. Вместо малонадежного привода ПВМ используется такой же фиксатор положения, как в командоконтроллерах (см. рис. 7.5). Наибольший ток выключателей серии ПКВ составляет 160 А. Электрическая износостойкость достигает 2-10-5 циклов. Все пакетные выключатели используются для коммутации токов, равных номинальному.
Пакетные выключатели и переключатели по сравнению с рубильниками имеют меньшие габариты, удобнее в монтаже. Дуга гасится в замкнутом объеме, без выброса пламени и газов. Контактная система позволяет управлять одновременно большим количеством цепей. Эти выключатели коммутируют номинальные токи, имеют высокую вибро- и ударостойкость.
КОНСТРУКЦИЯ ТРАНСФОРМАТОРОВ НАПРЯЖЕНИЯ
При напряении до 35 кВ конструкции ТН и силовых трансформаторов аналогичны. При этом индукция в магнитопроводе значительно меньше, чем у силовых трансформаторов. Это снижает погрешность, позволяет в некоторых случаях проводить испытания индуцированным напряжением Для испытания трансформатора напряжения на выводы вторичной обмотки подается удвоенное напряжение частотой 50 Гц. На первичной обмотке появляется также удвоенное напряжение Индукция не должна превышать индукцию насыщения.
При эксплуатации возможны случаи, когда первичная обмотка, рассчитанная на работу при фазном напряжении, попадает под линейное напряжение вместо фазного При этом магнитопровод не должен насыщаться.
Для напряжений до 35 кВ выпускаются однофазные ТН, у которых оба или один из выводов обмотки высокого напряжения изолированы от 3 земли (второй вывод заземлен) На рис. 23 5, а показан однофазный ТН на напряжение 6 кВ с масляной изоляцией. Оба вывода первичной обмотки изолированы от корпуса.
Перспективным является отказ от масляной изоляции. В этом случае при меняется заливка трансформатора напряжения эпоксидным компаундом. Наряду с резким сокращение 1 массы и габаритов упрощается эксплуатация, делается ненужным уход за маслом Трансформаторы с литой пластмассовой изоляцией пожаробезопасны, удобны в передвижных установках и КРУ Для сравнения на рис 23 5 показаны ТН с одинаковыми параметрами при масляной и литой изоляции Габариты трансформатора напряжения в значительной степени определяются изоляцией Поэтому там, где возможно, ТН включаются между фазой сети и землей, что исключает необходимость в изоляции заземленного вывода первичной обмотки Линейное напряжение получается путем соединения в звезду вторичных обмоток таких ТН Такие способы позволяют уменьшить габариты, массу и стоимость трансформатора напряжения.
Основные схемы включения однофазных ТН нормального исполнения показаны на рис 23 6 В схеме рис 23 6 о используются ТН, у которых оба вывода первичной обмотки изолированы от земли. Такая схема удобна при измерении мощности и энергии К каждому ТН может подключаться номинальная нагрузка Схема позволяет получать как фазное, так и линейное напряжение Uca=—[Uab + Ubc). В последнем случае измерительные приборы подключаются между точками а и с. Однако при таком включении создаются дополнительные погрешности за счет тока приборов, проходящего через обе вторичные обмотки. В этом случае нагрузка трансформатора напряжения должна быть меньше номинальной.
В схеме рис. 23.6, б могут применяться ТН с одним заземленным выводом первичной обмотки. Каждая из обмоток подключена к фазному напряжению сети, поэтому номинальное напряжение ТН должно равняться £/Ном/]/"3. Нагрузка подключается по схеме звезды или треугольника. Номинальное напряжение каждой вторичной обмотки равно 100/1/3.
Для контроля сопротивления изоляции и питания защиты, срабатывающей при КЗ на землю, имеются дополнительные обмотки, которые включаются по схеме разомкнутого треугольника. При симметричном режиме сумма ЭДС, наводимых в этих обмотках, равна нулю. Если один из проводов заземляется, то равновесие ЭДС нарушается и на выводах разомкнутого треугольника возникает напряжение, которое подается на звуковой сигнализатор.
Возможны два режима работы схемы рис. 23.6, б. Если нейтраль сети изолирована или заземлена через реактор, то заземление одной из фаз сети, например С, не ведет к КЗ. Установка может оставаться длительное время в работе. При этом напряжение на обмотке С падает до нуля, а на обмотках Л и В увеличивается до линейного. В связи с этим индукция в магнитопроводах трансформатора напряжения А и В увеличивается 1/^3 раз. Во избежание недопустимого нагрева и резкого возрастания погрешности магнитопроводы не должны насыщаться при таком увеличении индукции.
В установках с заземленной нейтралью заземление одной из фаз сети вызывает КЗ и срабатывание релейной защиты. Напряжение на неповрежденных фазах при этом не поднимается выше (l,2-f-l,3) U„.
Габариты и стоимость трансформатора напряжения могут быть уменьшены путем объединения трех однофазных ТН в один трехфазный Применяются трехстержневые и пятистержневые ТН. Трехфазные трехстержневые ТН выполняются с изолированной нулевой точкой на стороне высокого напряжения. Если нулевую точку заземлить, то при заземлении одной фазы в сетях с изолированной нейтралью возникает аварийный режим работы [3.1].
Для контроля сопротивления изоляции систем с изолированной нейтралью применяются трехфазные пятистержневые ТН (рис. 23.7). При заземлении одной из фаз магнитные потоки, созданные обмотками неповрежденных фаз, замыкаются по крайним стержням, имеющьм малое магнитное сопротивление. Дополнительные обмотки, соединенные в открытый треугольник а\Хи обеспечивают работу сигнализации и релейной защиты. При симметричном режиме в сети на выходе напряжение отсутствует.
При напряжениях выше 35 кВ ввиду резкого возрастания габаритов и стоимости трансформатора напряжения нормальной конструкции применяются каскадные ТН. В двухкаскадном ТН на напряжение 110 кВ (рис. 23.8) каждый каскад имеет свой магнитопровод (/ и 11). Обмотки высокого напряжения ВН каждого каскада рассчитаны на 50 % фазного напряжения. Один из выводов каждой обмотки ВН соединен с магнитопроводом. На стороне низкого напряжения НН выходные обмотки ах, аяха предназначены для питания измерительных приборов и реле в схеме защиты. Обмотка связи weB\ расположена на магнитопроводе 1, а обмотка связи о>св2 — на магнитопроводе 11.
При отсутствии обмоток связи, если нагрузка не подключена к выходным обмоткам, напряжение разделится поровну между обмотками ВН, так как их индуктивные сопротивления холостого хода одинаковы.
При включении нагрузки вторичный ток размагничивает магнитопровод / и поток в нем уменьшается. Реактивное сопротивление ступени / также уменьшается. Это ведет к тому, что напряжение между ступенями поделится неравномерно, причем большая часть ляжет на ступень 11.
Обмотки связи служат для выравнивания распределения напряжения между обмотками при включении нагрузки. При холостом ходе ЭДС в этих обмотках одинаковы, так как равны потоки в магнитопроводах / и 11. Обмотки wCB включены встречно друг другу и уравнительный ток равен нулю. При включении нагрузки поток в магнитопроводе / падает. ЭДС в обмотке wCB2 становится больше, чем ЭДС в обмотке Шсви В результате в этих обмотках протекает уравнительный ток, который размагничивает магнитопровод II и подмагничивает магнитопровод /. Этот ток таков, что верхний элемент воспринимает на себя половину нагрузки, включенной на выходных обмотках.
Более совершенным является вариант рис. 23.8, б. При этом же напряжении 110/1/^3 кВ ТН имеет один магнитопровод. На верхнем горизонтальном стержне магнитопровода расположены обмотки связи гё>Св1 и первая обмотка высокого напряжения ВНи на нижнем — обмот-5ка связи о>св2, вторая обмотка высокого напряжения ВН2 и две обмотки низкого напряжения НН. Один из концов каждой обмотки ВЯ; и bhz соединяется с магнитопроводом. Каждая обмотка ВН имеет изоляцию относительно магнитопровода, рассчитанную на напряжение >/г Уф, что уменьшает размеры трансформатора напряжения. Собранный магнитопровод с изоляционными стойками показан на рис. 23 8, г.
Рис. 23.8. Каскадные трансформаторы напряжения
В трансформаторах на напряжение 110 кВ для снижения атмосферных перенапряжений необходимо равномерное распределение напряжения по катушкам обмотки ВН. С этой целью поверх обмоток ВН располагаются экраны Эк, которые электрически соединяются с последними витками этих обмоток. Магнитопровод с обмотками крепится на изоляционных стойках, устанавливается в фарфоровый кожух и заливается маслом.
ТН на напряжение 220 кВ собирается из двух ТН на 110 кВ. Аналогично выполняются ТН на напряжения до 500 кВ. Для выравнивания напряжения между каскадами применяют охранные кольца. Изоляция верхних элементов, подвергающихся большей электрической нагрузке, соответственно усиливается.
Результирующее активное и индуктивное сопротивление обмоток каскадных ТН значительно больше, чем у ТН нормального исполнения. Поэтому для получения высокого класса точности приходится снижать нагрузку.
Как указывалось, для трансформатора напряжения характерна малая плотность тока в обмотках. В том случае, когда ТН используется как источник мощности и погрешность не играет особой роли, нагрузку обмоток можно значительно увеличить. Так, например, для трансформатора напряжения типа НОМ-10 при классе точности 0,5 допустима нагрузка 80 В-А, хотя максимальная мощность, которая может быть снята со вторичной обмотки, равна 720 В-А.
КОНСТРУКЦИЯ ТРАНСФОРМАТОРОВ ТОКА
Различают одновитковые и многовитковые трансформаторы тока. В одновитковом ТТ первичная обмотка может быть выполнена в виде стержня, шины или пакета шин. Примером такого исполнения является трансформатор типа ТПОЛ-10 с номинальным напряжением 10 кВ (рис. 22.15), который используется как проходной изолятор при переходе линии из одного помещения в другое.
Применение литой эпоксидной изоляции позволяет сильно упростить конструкцию и технологию производства по сравнению со сборными ТТ с фарфоровой изоляцией. Первичная обмотка-стержень 4, магнитопроводы / и крепежное кольцо 3 устанавливаются в специальную форму и заливаются жидкой смесью эпоксидной смолы, пылевидного кварцевого песка и отвердителя. После затвердения и полимеризации эта смесь приобретает высокие электрические и механические свойства.
По сути дела ТТ по рис. 22.15 имеет два независимых трансформатора, параметры которых могут быть различными. Магнитопроводы трансформатора выполняются в.виде двух тороидальных сердечников /, навитых лентой из текстурованного материала, например марки 3413.
Если вторичная обмотка 2 равномерно распределена на тороидальном магнитопроводе, то ее индуктивное сопротивление х2 в схеме замещения равно нулю, что позволяет снизить погрешность измерения ТТ. Конструкция допускает установку нескольких ТТ с разными параметрами на одной стержневой первичной обмотке.
Электродинамическая стойкость одновитковых ТТ достаточно высока, так как на первичную обмотку действуют силы только от подводящих шин и соседних фаз. При трехфазном КЗ между стержнями первичных обмоток соседних фаз возникает электродинамическая сила. Кроме того, на конец стержня передаются силы, действующие на подводящую шину, которая одним своим концом укреплена на ближайшем опорном изоляторе, вторым — на стержне ТТ,
Электродинамическая стойкость, гарантированная заводом-изготовителем, относится обычно к определенному расстоянию между фазами и определенной длине шины, соединяющей опорный изолятор с ТТ [3.1 J. Недостаток одновитковых ТТ заключается в большой погрешности при малом номинальном первичном токе, поскольку wt = \. Поэтому одновитковые трансформаторы тока применяются при токах 400 А и более. При первичном токе более 2 кА применяются одновитковые шинные трансформаторы тока. В качестве первичной обмотки используется пакет шин распределительного устройства, который проходит через окно магнитопровода. Электродинамическая стойкость такого ТТ определяется механической прочностью шин, их креплением и заводом не нормируется.
Одновитковые трансформаторы тока могут быть встроенными. В этом случае используются токоведущий стержень и изолятор другого аппарата или оборудования (выключателя, силового трансформатора, проходного изолятора и др.). Расположение четырех таких трансформаторов в выключателе показано на рис. 18 2. Применение встроенных ТТ дает большой экономический эффект.
На проходном изоляторе встроенных ТТ, как правило, устанавливается несколько ТТ, вторичные обмотки которых можно соединять последовательно или параллельно При последовательном соединении вторичных обмоток коэффициент трансформации не изменяется, так как удваивается число первичных и вторичных витков. Вторичный ток сохраняется неизменным, а вторичная ЭДС удваивается, что позволяет увеличить в 2 раза вторичную мощность. Для встроенных ТТ это очень важно, так как они удалены от реле и измерительных приборов, благодаря чему сопротивление соединяющих проводов получается большим. При параллельном соединении вторичных обмоток коэффициент трансформации уменьшается, так как первичные обмотки включаются последовательно. При этом вторичный ток двух ТТ увеличивается. Это дает возможность получить вторичный ток, приближающийся к стандартному значению 5 А, например при первичном токе /том=200 А.
Вторичные обмотки имеют отводы, которые позволяют в небольшом диапазоне регулировать коэффициент трансформации.
При малых первичных токах (ниже 400 А) для получения высокого класса точности применяются многовитковые трансформаторы тока. При любом значении первичного тока необходимая для данного класса точности первичная МДС Ft получается за счет увеличения числа витков первичной обмотки W\. На рис. 22.16 показан многовитковый трансформатор на напряжение 10 кВ. На прямоугольном шихтованном магнитопроводе / расположена вторичная обмотка 2. Первичная обмотка 3 выполняется из медной шины. Первичная обмотка выведена на контакты 5, вторичная — на контакты 6. Все детали ТТ залиты эпоксидным компаундом 4.
При КЗ на витки первичной обмотки действуют разрывающие электродинамические силы, что снижает стойкость ТТ Кроме того, на первичной обмотке из-за ее относительно большой индуктивности может появиться значительное падение напряжения. Это является недостатком данной конструкции ТТ.
При напряжении 35 кВ и выше для открытых установок применяются ТТ с масляной изоляцией. Наиболее распространены ТТ так называемого звеньевого типа (рис. 22.17). Три тороидальных магнитопровода / со вторичными обмотками 2 охвачены первичной обмоткой 4, выполняемой мягким многожильным проводом и обычно имеет несколько параллельных ветвей (на рис. 22.17 две ветви). При переходе с параллельного соединения на последовательное первичный номинальный ток трансформатора уменьшается в 2 раза.
Первичная и вторичная обмотки изолируются кабельной бумагой 5 толщиной 0,12 мм.
. Двухступенчатый каскадный трансформатор тока:
а — принципиальная схема; б — общая компоновка
После наложения изоляции магнитопровод с обмотками крепится к основанию ТТ с помощью лап 3. К этому же основанию крепится фарфоровый кожух, который защищает обмотки от воздействия окружающей среды. Внутренняя полость ТТ после вакуумной сушки заполняется трансформаторным маслом. Масло пропитывает кабельную бумагу и заполняет все пустоты. Такие ТТ выполняются на напряжение до 220 кВ. Общий вид ТТ типа ТФН-35 на напряжение Uном=35 кВ представлен на рис. 22.18. Здесь 1 — вывод ветвей первичной обмотки; 2 — вывод первичной обмотки; 3 — магнитопровод; 4 — вторичная обмотка; 5 — изоляция из кабельной бумаги; 6 — фарфоровая покрышка; 7 — трансформаторное масло.
С ростом поминального напряжения стоимость ТТ возрастает примерно пропорционально квадрату напряжения, в основном за счет изоляции. Поэтому при напряжении Uном >220 кВ применяют каскадные трансформаторы тока. На рис. 22.19,6 показан двухступенчатый каскадный ТТ на напряжение 500 кВ. Схема включения обмоток дана на рис. 22.19, а. Здесь Wi — первичная обмотка верхней ступени; и>2 — вторичная обмотка верхней ступени; w3 — первичная обмотка нижней ступени; а>4, ws — вторичные обмотки нижней ступени; RH — нагрузка ТТ. Общая компоновка показана на рис. 22.19,6. Каждая ступень представляет собой ТТ на напряжение 250/]ЛЗкВ, аналогичный показанному на рис. 22.17. Вторичная обмотка первой ступени питает первичную обмотку второй ступени. При перевозке каждая ступень, залитая маслом, доставляется к месту установки отдельно. Стоимость двухступенчатого трансформатора примерно в 2 раза меньше, чем одноступенчатого. Недостатком каскадного ТТ является увеличение погрешности из-за увеличения сопротивления обмоток.
В связи с повышением номинального напряжения до 1150 кВ и выше представляется целесообразным переход на ТТ с оптико-электронной системой. Датчик тока может находиться под высоким потенциалом и модулировать световой поток, подаваемый с земли по волоконному световоду (внешняя модуляция). В другом варианте датчик тока сам вырабатывает модулированный световой поток, который по световоду передается на потенциал земли (внутренняя модуляция) [18.2]. Однако вследствие сложности такие системы пока широкого применения не получили.
КОНСТРУКЦИЯ ЭЛЕКТРОМАГНИТНЫХ РЕЛЕ ТОКА И НАПРЯЖЕНИЯ
а) Реле защиты энергосистем. В схемах защиты энергосистем и крупных силовых установок (мощных электродвигателей, трансформаторов) широко применяются реле серии РТ-40 (рис. 9.5). Магнитопровод / шихтуется из листов электротехнической стали. Обмотка 2 реле разбита на две секции, которые при необходимости могут быть соединены параллельно или последовательно. Якорь 3 Г-образной формы выполнен из тонкого листа электротехнической стали. С осью якоря связаны два мостиковых контакта (замыкающий и размыкающий) с серебряными накладками. Ток срабатывания регулируется изменением натяга спиральной противодействующей пружиной 4. Натяг пружины и значение тока срабатывания (уставка) фиксируются указателем 5 по шкале 6. За счет изменения натяга пружины уставка по току срабатывания изменяется в 4 раза. При переключении последовательного соединения секций на параллельное ток срабатывания увеличивается в 2 раза.
С осью якоря связан демпфер 7 в виде тороида, заполненного кварцевым песком. При любом ускорении якоря и связанной с ним подвижной системы часть кинетической энергии тратится на преодоление сил трения между песчинками. С помощью демпфера уменьшаются вибрации как всей подвижной системы, так и контактов при их включении.
Реле выпускаются на токи от 0,2 до 200 А. Время срабатывания составляет 0,03 с при /=3/СР. Коэффициент возврата йв^0,7 и уменьшается по мере увеличения силы противодействующей пружины. Потребляемая мощность при номинальной уставке от 0,2 до 8 В-А. Мощность коммутируемой цепи около 50 Вт постоянного тока при напряжении 220 В.
На базе реле серии РТ-40 выпускаются реле максимального напряжения РН-51, РН-53 и минимальные реле напряжения РН-54.
б) Реле тока и напряжения для управления и защиты электропривода. В качестве таких реле часто применяются реле постоянного тока серии РЭВ-300 с высоким Реле этой серии выпускаются и как реле напряжения, и как реле тока. На рис. 9.6 изображено токовое реле серии РЭВ-300. Магнитопровод / U-образной формы выполнен из прутка круглого сечения. Плоский якорь 2 вращается на призме, что обеспечивает высокую механическую износостойкость реле. Обмотка 8 выполняется из медной шины. Регулирование усилия пружины 5 осуществляется гайкой 6 Изоляционная пластина 7 связывает якорь с подвижным контактом 8. Реле имеет два неподвижных контакта 9 и 10. Подвижный контакт 8 соединяется с выводом 11 с помощью гибкой связи 12. С помощью шпилек 4 реле устанавливается на сборной панели Высокий коэффициент возврата достигается благодаря достаточно большому (до 5-10~3 м) конечному зазору и малому ходу якоря (единицы миллиметра) Уставка по току срабатывания регулируется в пределах 30—65 % с7„ом изменением начального сжатия пружины 5. Уставка срабатывания реле напряжения меняется в пределах 30— 50 % Uhom-
С увеличением напряжения трогания Е/тр изменяется коэффициент возврата.
Увеличение быстродействия реле напряжения достигается низким -номинальным напряжением обмотки (24, 48 В) и последовательным включением добавочного резистора из константана. Добавочный резистор позволяет увеличить напряжение срабатывания реле.
Сопротивление его выбирается так, чтобы ток срабатывания лежал в пределах 0,3 /ном^/ср^0,5 /„ом. Чем больше отношение /ср//пом, тем больше время срабатывания.
Включение добавочного резистора из константана уменьшает зависимость напряжения срабатывания от температуры.
Коэффициент возврата реле регулируется изменением конечного зазора (рис. 9.6, б). Регулировка конечного зазора бк и хода якоря осуществляется изменением положения неподвижных контактов 10, 9. При подъеме контакта 10 зазор бк увеличивается. При опускании контакта 9 уменьшается ход якоря. Минимальное значение зазора 62= 1,5 мм.
в) Реле защиты электропривода. На рис. 9.7 представлена упрощенная схема защиты двигателя постоянного тока с помощью реле максимального тока. Рубильники Q1 и Q2 подключают цепь якоря к питающей сети, а рубильники Q3 и Q4 подают напряжение на цепь управления (контактора КМ). При коротком замыкании в обмотке якоря двигателя М срабатывает максимальное реле КА и размыкает свои контакты в цепи катушки контактора КМ. При этом обесточивается цепь якоря двигателя. Так как ток в якоре стал равным нулю, реле КА отпускает, контакты его замыкаются и цепь катушки контактора подготавливается к следующему включению.
При отключении контактора его блок-контакт КМ размыкается, поэтому при замыкании контактов КА контактор КМ не включится вновь. Характерным для схемы является полное обесточивание реле КА за счет отпускания контактора. Поэтому ks реле может быть невысоким.
В ряде схем управления вместо кнопок используется командоконтроллер Кконтр. В этом случае после обесточивания якоря и реле КА его контакты снова включают катушку контактора КМ. Произойдет повторное включение двигателя при КЗ якоря, после чего снова последует отключение двигателя, и т. д. В результате поврежденный двигатель будет многократно включаться в сеть. В связи с этим реле снабжаются специальным устройством, предотвращающим возврат реле в исходное состояние после прекращения тока в катушке (рис. 9.8). Возврат реле в исходное положение после срабатывания возможен либо вручную, либо с помощью специального электромагнита (дистанционный возврат). Такие реле, называемые реле без самовозврата, рассмотрены ниже.
Основными требованиями, предъявляемыми к реле защиты электропривода являются высокое быстродействие (^Ср^0,05 с), широкая регулировка тока срабатывания, вибро- и ударостойкость.
На рис. 9.8 показано токовое реле серии РЭВ, предназначенное для работы в электроприводах переменного тока. Эти реле используются для защиты от токов КЗ, а в совокупности с реле времени — для защиты от токовых перегрузок. Реле могут использоваться как промежуточные. Токовые реле в исходном положении работают с разомкнутой магнитной системой без короткозамкнутого витка на полюсе. Реле напряжения, как правило, реагируют на исчезновение напряжения питания Поэтому в исходном положении реле якорь длительно находится в притянутом положении. Для устранения вибрации якоря на полюсный наконечник устанавливается короткозамкнутый виток.
Катушки токовых реле выполняются на номинальные токи от 2,5 до 600 А. Регулирование уставки по току срабатывания производится изменением натяжения возвратной пружины и находится в пределах от 110 до 700 % /„ом Реле напряжения допускают регулировку уставки по напряжению срабатывания от 70 до 85 % номинального. Коэффициент возврата токовых реле лежит в пределах 0,2—0,4. Реле имеют как замыкающие, так и размыкающие контакты и выпускаются с самовозвратом и без самовозврата с ручным приводом защелки. Реле без самовозврата имеет неуравновешенную защелку, левая часть которой тяжелее правой. При притяжении якоря защелка / под действием силы тяжести поворачивается против часовой стрелки и запирает якорь 2 в притянутом положении. Для возврата якоря вручную необходимо нажать на головку защелки.
Время срабатывания реле серии РЭВ 0,06, время отпускания 0,07 с.
КОНТАКТОРЫ ПЕРЕМЕННОГО ТОКА
а) Контактная система. Контакторы переменного тока выпускаются на номинальный ток от 100 до 1000 А при числе главных контактов от одного до пяти. Наиболее распространены контакторы трехполюсного исполнения. Наличие большого числа контактов приводит к увеличению усилия электромагнита и соответственно момента, необходимою для включения контактора.
Так же как и контакторы постоянного тока, контакторы переменного тока имеют вспомогательные контакты, которые приводятся в действие тем же электромагнитом, что и главные контакты.
Из-за более благоприятных условий гашения дуги зазор между главными контактами делается меньше, чем в контакторах постоянного тока. Уменьшение зазора позволяет уменьшить мощность электромагнита, его габариты и массу.
На рис. 8.4, а показан разрез по магнитной системе, а на рис. 8.4,6 — разрез по контактной системе и общий вид одного полюса контактора КТ-6000. Подвижный контакт / с пружиной 2 укреплен на рычаге 3.
Подвижный контакт / и якорь 4 электромагнита связаны между собой через вал контактора 6. В отличие от контакторов постоянного тока подвижный контакт в контакторе КТ-6000 плоский без перекатывания. Отключение аппарата происходит под действием контактных пружин и массы подвижных частей.
Для удобства эксплуатации подвижный и неподвижный контакты сделаны легко сменяемыми. Контактная пружина 2, так же как и в контакторах постоянного тока, имеет предварительное нажатие, составляющее примерно половину конечного.
Все детали контактора укреплены на изоляционной рейке 5. Рычаг 3 подвижного контакта / укреплен на валу 5, покрытом изоляционным материалом. Вал вращается в подшипниках 7. Система дугогашения состоит из последовательной катушки 8, сердечника 9, полюсных пластин 10 и керамической камеры 11. Катушка 8 включена в цепь последовательно с неподвижным контактом 12 и подвижным контактом /. Главные контакты подключаются в схему выводами 13 и 14. Подвижный контакт / соединяется с выводом 13 с помощью гибкой связи 15.
Блок вспомогательных контактов 16 приводится в действие от вала 6. Крепление всех деталей на рейке позволяет использовать контактор в комплектных станциях реечной конструкции и сократить объем и массу станции управления. Допустимое число включений достигает 1200 в час.
В контакторах переменного тока широко распространена мостиковач контактная система с двумя разрывами цепи на каждый полюс (рис. 3.6), которая обеспечивает быстрое гашение дуги при отсутствии гибких связей.
Отсутствие гибкой связи облегчает работу электромагнита и уменьшает габариты аппарата. В качестве материала главных контактов применяется металлокерамика, а для вспомогательных— серебро или биметалл. Основой биметаллического контакта является медь, покрытая тонкой пластиной из серебра.
В контакторах переменного тока наряду с магнитным гашением дуги широко применяются дугогасительные решетки (см. § 4.11), особенно при облегченных режимах работы.
б) Электромагнит. Для привода контактов контактора переменного тока широкое распространение получили электромагниты с Ш- и П-образными магнитопроводами. Магнитопровод электромагнита состоит из двух сердечников, один из которых неподвижен, другой (якорь) связан через рычаги с контактной системой. Для амортизации удара якоря о неподвижный сердечник последний крепится к основанию с помощью пружины. Это улучшает условия работы и контактной системы, поскольку при включении не возникает вибрация основания контактора.
С целью устранения вибрации якоря во включенном положении на полюсах магнитной системы устанавливаются короткозамкнутые витки. Как указывалось в § 5.6, коротроткозамкнутые витки наиболее эффективны при малом рабочем зазоре. Поэтому для плотного прилегания полюсов их поверхность должна шлифоваться.
Из-за изменения индуктивности катушки ток при притянутом якоре значительно меньше, чем при отпущенном '(§ 5.3). В среднем можно считать, что пусковой ток электромагнита равен десятикратному току притянутого состояния. Для больших контакторов это значение может достигать 15-кратного. В связи с большим пусковым током недопустима подача напряжения па катушку, если якорь по каким-либо причинам удерживается в отпущенном положении. Катушки электромагнитов большинства контакторов допускают до 600 включений в час при ПВ = 40 %.
В особо тяжелых условиях работают электромагниты пя-типолюсных контакторов. Для обеспечения нормальной работы пяти контактных пар необходима форсировка электромагнита.
Электромагниты контакторов переменного тока могут также питаться от сети постоянного тока. Такие электромагниты имеют специальную катушку е форсировочным резистором (см. рис. 5.23), который шунтирован размыкающим вспомогательным контактом контактора или контактами другого аппарата. Параметры катушек и форсировочных резисторов приводятся в справочных материалах.
При уменьшении зазора тяговая характеристика электромагнита переменного тока поднимается менее круто, чем в электромагните постоянного тока (§ 5.6), и благодаря этому ближе подходит к противодействующей. В результате напряжение отпускания близко к напряжению срабатывания. Относительно высокий коэффициент возврата (0,6—0,7) позволяет использовать контакторы переменного тока для защиты электродвигателей от снижения сетевого напряжения. При понижении напряжения сети до (0,6-s-0,7) lVhom происходит отпадание якоря и отключение двигателя.
Электромагниты контакторов обеспечивают надежную работу в диапазоне колебания питающего напряжения* 85— 110 % (Уном. Поскольку катушка контактора питается через замыкающий вспомогательный контакт, то включение контактора не происходит автоматически после восстановления напряжения до номинального значения (см. рис. 8.11). Как указывалось в § 5.7, срабатывание и отпускание электромагнита переменного тока происходят значительно быстрее, чем электромагнита постоянного тока. Собственное время срабатывания контакторов составляет 0,03—0,05, а время отпускания 0,02 с.
в) Контакторы серии МК. Контакторы серии МК [9.5] могут работать в цепях постоянного тока напряжением до 440 В и в цепях переменного тока напряжением до 660 В, частотой 50, 60 Гц при токах до 160 А. Электромагнитный привод контактора выполняется только на постоянном токе с напряжением 24—220 В. Общий вид контактора дан на рис 8.5. Все детали монтируются на стальной скобе 1. Якорь электромагнита 2 притягивается к двум полюсам П-образного магнитопровода электромагнита 3 и через изоляционные колодки 4, 5 действует на системы главных 6 и вспомогательных контактов 7. Система главных контактов показана на рис. 8.6. Все детали крепятся к изоляционной плите 1. Якорь электромагнита воздействует на шток привода контактов 2, на котором установлен подвижный мостиковый контакт 4. Неподвижный контакт 3 укреплен на скобе 5. Нажатие контактов создается пружиной 6. Возврат подвижного контакта в начальное положение производится возвратной пружиной 7. За счет мостикового контакта каждый полюс главной цепи имеет два разрыва, что способствует гашению дуги переменного тока. Для гашения дуги постоянного тока имеются две системы магнитного гашения с катушкой тока 8. Контакторы в зависимости от модификации могут иметь от одной до трех систем главных контактов. Таким образом, контактор может работать в трехфазных цепях и при этом использоваться для пуска трехфазных асинхронных двигателей.
Контактор имеет также четыре цепи вспомогательных замыкающих или размыкающих контактов. Механическая износостойкость контакторов с номинальным током до 63 А составляет 16-106, •С током 100 и 160 А—10-106 циклов. Допустимая частота срабатываний составляет 1200 в час при ПВ = 40%. При номинальном токе 40 А и категории применения АС-4 износостойкость не менее 106, при номинальном токе 160 А — 0,2-106 циклов. Контакторы обеспечивают 50 отключений Удвоенного номинального тока при напряжении 110 % UH0!J с интервалами между включениями не менее 10 с. Собственное время включения 0,08 и отключения 0,06 с. Более подробные данные приведены в [9.5].
Для увеличения износостойкости и надежности контакторов серии МК используется полупроводниковая приставка [8.2], схема которой приведена на рис. 8.7. Главные контакты ГК шунтированы тиристорами VS1 и VS2, управление которыми осуществляется через разделительные диоды VD2 и VD3. Если в данный полупериод направление тока соответствует показанному на рис. 8.7, то напряжение, приложенное между мостиком главного контакта и верхним неподвижным главным контактом, через диод VD2 открывает тиристор VS1, по которому начинает проходить ток цепи. После прохождения тока через нуль тиристор закрывается и процесс отключения заканчивается. Если ток имеет обратную полярность, то работают диод VD3 и тиристор VS2. Для защиты управляющих переходов тиристоров от превышений напряжения служат диоды VD1 и VD4. Цепочка RC облегчает условия восстановления напряжения и снижает перенапряжения на тиристорах. Общий вид контактора серии МК с приставкой дан на рис. 8.8. Полупроводниковая приставка расположена в корпусе 4. Контакторы МК с приставкой предназначены для тяжелого режима работы АС-4 с частотой коммутации 1200 в час и более. Их коммутационная износостойкость составляет 5-106 циклов при токе /ном==63 А и 3-106 циклов при токе /Ном = = 100 А. Номинальный рабочий ток /р,НОм при этом берется равным 0,6 /ном.
г) Вакуумные контакторы. Вакуумные контакторы (рис. 8.9, а) имеют герметичное ДУ, с помощью которого отключение коммутируемой цепи происходит в вакуумной среде за один-два полупериода (§ 4.1). На такой основе созданы трехфазные вакуумные контакторы типов КТ12РЗЗ и КТ12Р37 с номинальными токами 160 А и 400 А и номинальными напряжениями 660 и 1140 В. Контакторы предназначены для работы в режимах АС-3 и АС-4 при числе циклов 600 и 1200 в час с высокой износостойкостью Общий вид трехфазного вакуумного контактора показан на рис. 8.9, а. Якорь и две катушки 1 электромагнита постоянного тока видны на рисунке. Вспомогательные контакты 2 размещены слева и справа от электромагнита и защищены прозрачными пыленепроницаемыми крышками, что позволяет производить осмотр контактов без их разборки.
В более совершенных конструкциях вспомогательные контакты выполняются на герконах (см. гл. 11). Зазор между главными контактами 1,2 мм и увеличивается в процессе работы до 2 мм. Возможна однократная регулировка зазора. Малый ход контактов обеспечивает малую вибрацию и износостойкость до 2-106 циклов при ПВ = 40%, частоте включений 600 в час, режиме АС-3 и напряжении 1140 В. Ток среза контакторов не превышает 1,5 А, что обеспечивает их работу без перенапряжений в цепях с током 160— 400 А. Дугогасительное устройство приведено на рис. 8.9, б. Подвижный контакт 1 связан с якорем электромагнита и отключающей пружиной. Неподвижный контакт 2 закреплен в корпусе 3. Поверхности контактирования облицованы металлокерамическими пластинами 4 и 5. Подвижный контакт / соединен с нижней частью ДУ с помощью сильфона 6, представляющего собой металлическую гармошку, выполненную из нержавеющей стали. Возможность перемещения подвижному контакту. Подвижный и неподвижный контакты изолируются друг от друга стеклянным или керамическим цилиндром 7. Экраны 8 и 9 выравнивают электрическое поле между контактами и защищают цилиндр и сильфон от паров металлов, появляющихся при гашении.
КОНТАКТОРЫ ПОСТОЯННОГО ТОКА
а) Контактная система. С целью уменьшения износа для контакторов применяются преимущественно линейные перекатывающиеся контакты (§ 3.4). Для предотвращения вибраций контактов контактная пружина создает предварительное нажатие, составляющее примерно 50 % конечного контактного нажатия. Большое влияние на вибрацию оказывает жесткость крепления неподвижного контакта и стойкость к вибрациям всего контактора в целом. На рис. 8.1 показана конструкция контактора серии КПВ-600. Неподвижный контакт /• жестко прикреплен к скобе 2, к которой присоединен один конец дугогасительной катушки 3. Второй конец дугогасительной катушки с выводом 4 закреплен в пластмассовом основании 5. Последнее крепится к прочной стальной скобе 6. Подвижный контакт 7 выполнен в виде толстой пластины, нижний конец которой может поворачиваться относительно точки опоры 8. Благодаря этому контакт 7 может перекатываться и скользить по поверхности неподвижного контакта /. Вывод 9 соединяется с подвижным контактом 7 гибкой связью 10. Контактное нажатие создается пружиной 12.
При износе контакт / заменяется новым, а пластина подвижного контакта переворачивается на 180° и используется ее неповрежденная сторона.
Для уменьшения оплавления контактов дугой при токах более 50 А контактор имеет дугогасительные контакты — рога 2, 11. Под действием магнитного поля опорные точки дуги 14 быстро перемещаются на скобу 2, соединенную с неподвижным контактом /, и на защитный рог подвижного контакта 11. Возврат якоря в начальное положение (после отключения электромагнита) производится пружиной 13.
В контакторах КПВ-600, как и во многих других, вывод подвижного контакта электрически соединен с корпусом. Как при включенном, так и при отключенном состоянии контактора его конструктивные детали могут находиться под напряжением, и соприкосновение с ними опасно для жизни. Контакторы серии КПВ имеют два исполнения контактной системы: с замыкающим и размыкающим главными контактами. В первом исполнении замыкание главных контактов производится при подаче напряжения на обмотку электромагнита, а размыкание — под действием возвратной пружины. Во втором исполнении контакты замыкаются под действием пружины, а размыкание контактов происходит при подаче напряжения на обмотку электромагнита. В обесточенном состоянии обмотки контакты замкнуты. При номинальном токе контактор находится во включенном состоянии не более 8 ч. По истечении этого времени его необходимо несколько раз отключить и включить для зачистки контактов от оксида меди. После этого аппарат снова пригоден для работы.
Номинальный ток контакторов, расположенных в шкафах, понижается примерно на 10 % из-за ухудшения охлаждения.
В продолжительном режиме работы, когда длительность нахождения во включенном состоянии превышает 8 ч, допустимый ток контактора снижается примерно на 20%. В таком режиме из-за окисления меди контактоз растет их переходное сопротивление, что может привести к повышению температуры выше допустимой (§ 3.2). В контакторах с небольшим числом включений или предназначенных для длительного нахождения во включенном состоянии, на рабочую поверхность контактов напаивается серебряная пластина. Это позволяет сохранить допустимый ток контактора, равный номинальному, и в режиме продолжительного включения. Если контактор наряду с режимом продолжительного включения используется в режиме повторно-кратковременного включения, применение серебряных .накладок нецелесообразно из-за малой механической прочности серебра.
Необходимо отметить, что если при отключении в повторно-кратковременном режиме длительно горит дуга (отключается нагрузка с большой постоянной времени Т = ~L/R), то температура контактов может резко увеличиться за счет их нагрева дугой. В этом случае нагрев контактов в продолжительном режиме работы может быть меньше, чем в повторно-кратковременном режиме.
Как правило, контактная система имеет один полюс.
Для реверса асинхронных двигателей при большой частоте включений в час (до 1200) применяются контакторы типа КТПВ-600 со сдвоенными полюсами. В этих контакторах подвижные контакты изолированы от корпуса, что делает более безопасным обслуживание аппарата. На рис. 8.2 показана схема включения главных контактов контактора КТПВ-600 (обведены штриховой линией) для реверса асинхронного двигателя. Для пуска, останова и реверса двигателя используются три контактора такого же типа.
При неполадках и отказе одного контактора подается напряжение только на одну фазу двигателя, что не приводит к его включению. В схеме с однополюсными контакторами отказ одного контактора привел бы к возникновению тяжелого режима двухфазного питания двигателя.
Контакторы с двухполюсной контактной системой очень удобны для закорачивания сопротивлений в цепи ротора асинхронного двигателя.
В контакторах типа КМВ-521, предназначенных для включения и отключения мощных электромагнитов постоянного тока масляных выключателей, также применяется двухполюсная контактная система. Такая система, включенная в оба провода сети постоянного тока, обеспечивает надежное отключение индуктивной нагрузки, так как в отключаемую цепь вводятся два дуговых промежутка.
б) Дугогасительное устройство. В контакторах постоянного тока наибольшее распространение получили устройства с электромагнитным дутьем с катушкой тока 3 и полюсами 15 (см. рис. 8.1).
Следует отметить, что при отключении малых постоянных токов (5—10 А) и большой индуктивности нагрузки наблюдается длительное горение дуги. По опытным данным ток, надежно отключаемый контактором, составляет 20—25 % номинального тока. Современные контакторы серии МК обеспечивают отключение тока до 1 А при постоянной времени цепи до 100 мс.
в) Электромагнит. В контакторах постоянного тока (рис. 8.1) распространены электромагниты клапанного типа 20. С целью повышения механической износостойкости применяется вращение якоря 17 на призме 19. Компоновка электромагнита и контактной системы, показанная на рис. 8.1, применение специальной пружины 16, прижимающей якорь к призме, позволяют обеспечить износостойкость узла вращения у контакторов КПВ-600 до 20-10° при допустимом числе включений 1200 в час. По мере износа зазор между скобой якоря 18 и призмой 19 автоматически выбирается под воздействием пружины 16.
Подвижная система контактора должна быть уравновешена относительно оси вращения. В контакторе серии КПВ-600 якорь электромагнита уравновешивается деталями, несущими подвижный контакт и воспринимающими воздействие возвратной пружины. Катушка электромагнита наматывается на тонкостенную изолированную стальную гильзу, которая обеспечивает достаточную жесткость и улучшает тепловой контакт катушки с сердечником. Последнее способствует снижению температуры катушки и уменьшению габаритов контактора.
При включении электромагнита преодолеваются усилия возвратной и контактной пружин. Тяговая характеристика электромагнита должна во всех точках идти выше характеристики этих пружин при минимально допустимом напряжении на катушке (0,85 % UR0VL) и нагретом се состоянии. Включение должно происходить при все время нарастающей скорости движения якоря. Скорость якоря не должна снижаться и в момент замыкания главных контактов.
Характеристика противодействующих усилий, приведенных к якорю электромагнита, для контактора КПВ-600 приведена на рис. 8.3, где <р — угол поворота якоря. Отрезки ординаты этой кривой представляют соответственно: / — силу тяжести, 2 — силу возвратной пружины, 3 — силу контактной пружины; 4 — результирующая противодействующая характеристика. Наиболее тяжелым моментом при включении является преодоление силы в момент касания главных контактов, так как электромагнит должен развивать значительное усилие при большом рабочем зазоре.
Важным параметром контактора является коэффициент возврата kB = Uorn/Ucv (§ 9.2). Для контакторов постоянного тока кв, как правило, мал (0,2—0,3), что не позволяет использовать контактор для защиты двигателя от снижения напряжения.
Наибольшее напряжение на катушке не должно- превышать 110 % Uном, так как при большем напряжении увеличивается износ контактов из-за усиления ударов якоря, а температура обмотки может превысить допустимое значение.
В контакторах типа КТПВ, имеющих сдвоенную контактную систему, при номинальном токе 600 А устанавливаются два параллельно работающих электромагнита для того, чтобы развить необходимую силу.
Следует отметить, что с целью уменьшения МДС обмотки, а следовательно, и потребляемой ею мощности рабочий ход якоря выбирается небольшим— (8-т-10) • 10~3 м. В связи с тем что для надежного гашения дуги при малых токах требуется зазор контактов (17-=-20) -10~3 м, расстояние точки касания подвижного контакта от оси вращения подвижной системы берется в 1,5—2 раза больше, чем расстояние от оси полюса до оси вращения.
Электромагниты контакторов серии КМВ, предназначенных для включения и отключения приводов масляных выключателей, допускают регулировку напряжения срабатывания и отпускания за счет регулирования возвратной и специальной отрывной пружин. Минимальное напряжение срабатывания этих контакторов достигает 65 % Urom-Низкое напряжение срабатывания приводит к тому, что при номинальном напряжении через обмотку протекает ток, приводящий к ее повышенному нагреву. В связи с этим при номинальном напряжении обмотка может включаться под напряжение только кратковременно на время не более 15 с.
Схема включения электромагнита контактора для пуска двигателя аналогична схеме включения электромагнита пускателя (рис. 8.13).
Как проверить правильность подключения обмоток у асинхронных электродвигателей
Проверка правильности соединений выводов трехфазных обмоток сводится к определению начал и концов каждой фазы.
Начала и концы фаз можно определить при помощи милливольтметра. Для этого сначала мегомметром пли при помощи контрольной лампы определяют принадлежность выводов обмотки отдельным фазам. Затем к обмотке одной из фаз подключают через рубильник источник постоянного тока, который выбирают таким, чтобы по обмотке электродвигателя проходил небольшой ток (желателен аккумулятор напряжения 2 В). Для уменьшения тока в цепь включают реостат.
Схема для проверки правильности соединении выводов трехфазных обмоток электродвигателя
В момент включения или отключения рубильника в обмотках двух других фаз будет индуктироваться электродвижущая сила, причем направление этой электродвижущей силы будет зависеть от полярности концов обмотки фазы, в которую включен аккумулятор.
Если к условному "началу" присоединен плюс батареи, а к условному "концу" - минус, то при отключении рубильника на других фазах будет плюс на "началах" и минус на "концах", что можно будет определить по направлению отклонения стрелки милливольтметра, присоединяемого поочередно к выводным концам двух других фаз. При включении тока рубильником полярность на других фазах будет обратной указанному.
В тех случаях, когда электродвигатель имеет три вывода присоединении обмотки звездой или треугольником, правильность соединения фаз можно проверить, если питать два вывода переменным током пониженного напряжения и вольтметром измерить напряжение между третьим выводом и каждым из выводов, присоединенных к сети.
В случае правильного соединения эти напряжения будут равны половине напряжения, приложенного к двум выводам, причем это соотношение напряжений сохраняется при питании любых двух выводов.
Опыт следует произвести три раза, каждый раз подводя напряжение к различной паре выводов. Если же одна из фаз присоединена неправильно, то при двух опытах из трех напряжения между третьим выводом и каждым из двух других будут неодинаковы.
Этот опыт в случае короткозамкнутого асинхронного двигателя следует проводить при напряжении 1/5 - 1/6 от номинального во избежание перегрева обмоток, в случае фазного ротора, его обмотка должна быть разомкнута.
Пусконаладочные работы, Полезные советы, Трансформаторы и электрические машины
Как правильно выполнить монтаж и центровку электродвигателя
Монтаж электродвигателя
Электродвигатель, доставленный к месту установки с завода-изготовителя или со склада, где он хранился до монтажа, или из мастерской после ревизии, устанавливается на подготовленное основание.
В качестве оснований для электродвигателей применяют в зависимости от условий: литые чугунные или стальные плиты, сварные металлические рамы, кронштейны, салазки и т. д. Плиты, рамы или салазки выверяются по осям и в горизонтальной плоскости и закрепляются на бетонных фундаментах, перекрытиях и т. п. при помощи фундаментных болтов, которые заделываются в заготовленные отверстия. Эти отверстия обычно оставляют при бетонировании фундаментов, закладывая заблаговременно в соответствующих местах деревянные пробки.
Отверстия небольшой глубины могут быть также пробиты в готовых бетонных основаниях при помоши электро и пневмомолотков, оснащенных высокопроизводительными инструментами с наконечниками из твердых сплавов. Отверстия в плите или раме для закрепления электродвигателя обычно выполняются на заводе-изготовителе, который поставляет общую плиту или раму для электродвигателя и приводимого им механизма.
В случае, если отверстия для электродвигателя отсутствуют, на месте монтажа производится разметка основания и сверление отверстий. Для выполнения этих работ определяются монтажно-установочные размеры устанавливаемого электродвигателя (смотрите рисунок), а именно: расстояние между вертикальной осью двигателя и торцом вала L6+L7 или торцом насаженной полумуфты, расстояние между торцами полумуфт на валах электродвигателя и приводимого им механизма, расстояние между отверстиями в лапах вдоль оси электродвигателя С2+С2, расстояние между отверстиями в лапах в перпендикулярном направлении С+С.
Кроме того, должна быть замерена высота вала (высота оси) на механизме и высота оси электродвигателя h. В результате этих последних двух замеров предварительно определяется толщина подкладок под лапы.
Для удобства центровки электродвигателя толщина подкладок должна предусматриваться в пределах 2 - 5 мм. Подъем электродвигателей на фундаменты выполняется кранами, талями, лебедками и другими механизмами. Подъем электродвигателей весом до 80 кг при отсутствии механизмов может выполняться вручную с применением настилов и других устройств. Установленный на основание электродвигатель центрируется предварительно с грубой подгонкой по осям и в горизонтальной плоскости. Окончательная выверка производится при сопряжении валов.
Центровка электродвигателей
Электродвигатель, установленный на опорную конструкцию, центрируется относительно вала вращаемого им механизма. Способы центровки бывают различные в зависимости от типа передачи. От точности выверки зависит надежность работы электродвигателя и главным образом его подшипников.
Ременная передача
При ременной и клиноременной передачах необходимым условием правильной работы электродвигателя с приводимым им во вращение механизмом является соблюдение параллельности их валов, а также совпадение средних линий (по ширине) шкивов, так как иначе ремень будет соскакивать. Выверка производится при расстояниях между центрами валов до 1,5 м и при одинаковой ширине шкивов с помощью стальной выверочной линейки.
Линейка прикладывается к торцам шкивов и производится подгонка электродвигателя или механизма с таким расчетом, чтобы линейка касалась двух шкивов в четырех точках.
При расстоянии между осями валов более 1,5 м, а также в случае отсутствия выверочной линейки соответствующей длины выверка электродвигателя с механизмом производится с помощью струны и временно устанавливаемых на шкивы скоб. Подгонка производится до получения одинакового расстояния от скоб до струны. Выверка валов может производиться и с помощью тонкого шнурка, натягиваемого от одного шкива к другому.
Выверку электродвигателя и машины со шкивами разной ширины производят, исходя из условия одинакового расстояния от средних линий обоих шкивов до струны, шнурка или выверочной линейки.
Выверенный электродвигатель должен быть надежно закреплен болтами с последующей проверкой точности выверки, которая при закреплении электродвигателя может быть случайно нарушена.
Выверка валов при ременной и клиноременной передачах. а — с помощью выверочной линейки; б — с помощью скоб и струны; в — с помощью шнурка; г — с помощью линейки при шкивах разной ширины.
Непосредственное соединение муфтами.
Центровка двигателя с механизмом необходима для достижения такого взаимного положения валов двигателя и механизма, при котором величины зазоров между полумуфтами будут равны. Это достигается путем передвижения двигателя на небольшие расстояния в горизонтальной и вертикальной плоскостях.
Перед центровкой производится проверка прочности посадки полумуфт на валы путем обстукивания полумуфты при одновременном ощупывании рукой стыка полумуфты с валом.
Центровка производится в два приема: сначала предварительная — с помощью линейки или стального угольника, а затем окончательная — по центровочным скобам.
Предварительная центровка ведется путем проверки отсутствия просвета между ребром приложенной линейки (стального угольника) и образующими обеих полумуфт. Такая проверка выполняется в четырех местах: вверху, внизу, справа и слева.
Во всех случаях при центровке обращается внимание на то, чтобы количество отдельных прокладок под лапами электродвигателей было как можно меньше; тонких прокладок толщиной 0,5 - 0,8 мм применяют не более 3 - 4 шт.
Если по условиям центровки их оказывается больше, то их заменяют общей прокладкой большей толщины. Большое количество прокладок, и тем более из тонких листов, не обеспечивает надежного закрепления электродвигателя и может вызвать нарушение центровки; оно также представляет неудобство при последующих ремонтах и центровках во время эксплуатации.
Как изменяются параметры трехфазного асинхронного двигателя при условиях, отличных от номинальных?
Понижение напряжения при номинальной частоте приводит к уменьшению тока холостого хода и магнитного потока, а значит, и к уменьшению потерь в стали. Величина тока статора, как правило, повышается, коэффициент мощности увеличивается, скольжение возрастает, а к. п. д. несколько падает. Вращающий момент двигателя уменьшается, так как он пропорционален квадрату напряжения.
При повышении напряжения сверх номинального и номинальной частоте двигатель перегревается из-за увеличения потерь в стали. Вращающий момент двигателя растет, величина скольжения уменьшается. Ток холостого хода увеличивается, а коэффициент мощности ухудшается. Ток статора при полной нагрузке может уменьшиться, а при малой нагрузке может увеличиться вследствие увеличения тока холостого хода.
При уменьшении частоты и номинальном напряжении увеличивается ток холостого хода, что приводит к ухудшению коэффициента мощности. Ток статора обычно возрастает. Увеличиваются потери в меди и стали статора, охлаждение двигателя несколько ухудшается вследствие уменьшения частоты вращения.
При повышении частоты сети и номинальном напряжении уменьшается ток холостого хода и вращающий момент.
Измерительные трансформаторы тока и напряжения - конструкции,технические характеристики
Измерительные трансформаторы тока и напряжения предназначены для уменьшения первичных токов и напряжений до значений, наиболее удобных для подключения измерительных приборов, реле защиты, устройств автоматики. Применение измерительных трансформаторов обеспечивает безопасность работающих, так как цепи высшего и низшего напряжения разделены, а также позволяет унифицировать конструкцию приборов и реле.
Технические характеристики трансформаторов тока
Номинальный первичный и вторичный ток трансформаторов тока
Трансформаторы тока характеризуются номинальным первичным током Iном1 (стандартная шкала номинальных первичных токов содержит значения от 1 до 40000 А) и номинальным вторичным током Iном2, который принят равным 5 или 1 А. Отношение номинального первичного к номинальному вторичному току представляет собой коэффициент трансформации КТА= Iном1/ Iном2
Токовая погрешность трансформаторов тока
Трансформаторы тока характеризуются токовой погрешностью ∆I=(I2K-I1)*100/I1 (в процентах) и угловой погрешностью (в минутах). В зависимости от токовой погрешности измерительные трансформаторы тока разделены на пять классов точности: 0,2; 0,5; 1; 3; 10. Наименование класса точности соответствует предельной токовой погрешности трансформатора тока при первичном токе, равном 1—1,2 номинального. Для лабораторных измерений предназначены трансформаторы тока класса точности 0,2, для присоединений счетчиков электроэнергии — трансформаторы тока класса 0,5, для присоединения щитовых измерительных приборов -классов 1 и 3.
Нагрузка трансформаторов тока
Нагрузка трансформатора тока — это полное сопротивление внешней цепи Z2, выраженное в омах. Сопротивления r2 и х2 представляют собой сопротивление приборов, проводов и контактов. Нагрузку трансформатора можно также характеризовать кажущейся мощностью S2 В*А. Под номинальной нагрузкой трансформатора тока Z2ном понимают нагрузку, при которой погрешности не выходят за пределы, установленные для трансформаторов данного класса точности. Значение Z2ном дается в каталогах.
Электродинамическая стойкость трансформаторов тока
Электродинамическую стойкость трансформаторов тока характеризуют номинальным током динамической стойкости Iм.дин. или отношением kдин = Термическая стойкость определяется номинальным током термической стойкости Iт или отношением kт= Iт / I1ном и допустимым временем действия тока термической стойкости tт.
Конструкции трансформаторов тока
По конструкции различают трансформаторы тока катушечные, одновитковые (типа ТПОЛ), многовитковые с литой изоляцией (типа ТПЛ и ТЛМ). Трансформатор типа ТЛМ предназначен для КРУ и конструктивно совмещен с одним из штепсельных разъемов первичной цепи ячейки.
Для больших токов применяют трансформаторы типа ТШЛ и ТПШЛ, у которых роль первичной обмотки выполняет шина. Электродинамическая стойкость таких трансформаторов тока определяется стойкостью шины.
Для ОРУ выпускают трансформаторы типа ТФН в фарфоровом корпусе с бумажно-масляной изоляцией и каскадного типа ТРН. Для релейной защиты имеются специальные конструкции. На выводах масляных баковых выключателей и силовых трансформаторов напряжением 35 кВ и выше устанавливаются встроенные трансформаторы тока. Погрешность их при прочих равных условиях больше, чем у отдельно стоящих трансформаторов.
Технические характеристики измерительных трансформаторов напряжения
Номинальные первичное и вторичное напряжение измерительных трансформаторов напряжения
Трансформаторы напряжения характеризуются номинальными значениями первичного напряжения, вторичного напряжения (обычно 100 В или 100/ ), коэффициента трансформации К=U1ном/U2ном. В зависимости от погрешности различают следующие классы точности трансформаторов напряжения: 0,2;0,5; 1:3.
Нагрузка трансформаторов напряжения
Вторичная нагрузка трансформатора напряжения—это мощность внешней вторичной цепи. Под номинальной вторичной нагрузкой понимают наибольшую нагрузку, при которой погрешность не выходит за допустимые пределы, установленные для трансформаторов данного класса точности.
Конструкции трансформаторов напряжения
В установках напряжением до 18 кВ применяются трехфазные и однофазные трансформаторы, при более высоких напряжениях — только однофазные. При напряжениях до 20 кВ имеется большое число типов трансформаторов напряжения: сухие (НОС), масляные (НОМ, ЗНОМ. НТМИ, НТМК), с литой изоляцией (ЗНОЛ). Следует отличать однофазные двухобмоточные трансформаторы НОМ от однофазных трехобмоточных трансформаторов ЗНОМ. Трансформаторы типов ЗНОМ-15, -20 -24 и ЗНОЛ-06 устанавливаются в комплектных токопроводах мощных генераторов. В установках напряжением 110 кВ и выше применяют трансформаторы напряжения каскадного типа НКФ и емкостные делители напряжения НДЕ.
Схемы включения трансформаторов напряжения
В зависимости от назначения могут применяться разные схемы включения трансформаторов напряжения. Два однофазных трансформатора напряжения, соединенные в неполный треугольник, позволяют измерять два линейных напряжения. Целесообразна такая схема для подключения счетчиков и ваттметров. Для измерения линейных и фазных напряжений могут быть использованы три однофазных трансформатора (ЗНОМ, ЗНОЛ), соединенные по схеме «звезда — звезда», или трехфазный типа НТМИ. Так же соединяются в трехфазную группу однофазные трехобмоточные трансформаторы типа ЗНОМ и НКФ.
Присоединение расчетных счетчиков к трехфазным трансформаторам напряжения не рекомендуется, т.к. они имеют, обычно, несимметричную магнитную систему и увеличенную погрешность. Для этой цели желательно устанавливать группу из двух однофазных трансформаторов соединенных в неполный треугольник.
Трансформаторы напряжения выбирают по условиям Uуст ≤U1ном, S2≤ S2ном в намечаемом классе точности. За S2ном принимают мощность всех трех фаз однофазных трансформаторов напряжения, соединенных по схеме звезды, и удвоенную мощность однофазного трансформатора, включенного по, схеме неполного треугольника.
ГЕРКОНОВЫЕ РЕЛЕ
Наименее надежным узлом электромагнитных реле является контактная система. Электрическая дуга или искра, образующиеся при размыкании и замыкании контактов, приводят к их быстрому разрушению. Этому также способствуют окислительные процессы и покрытие контактных поверхностей слоем пыли, влаги, грязи. Существенным недостатком электромагнитных реле является и наличие трущихся механических деталей, износ которых также сказывается на их работоспособности. Попытки разместить контакты и электромагнитный механизм в герметизированном объеме с инертным газом не приводят к положительным результатам из-за больших технологических и конструктивных трудностей, а также из-за того, что контакты при этом не защищаются от воздействия продуктов износа и старения изоляционных материалов.
Другим недостатком электромагнитных реле является их инерционность, обусловленная значительной массой подвижных деталей. Для получения необходимого быстродействия приходится применять специальные схемы форсировки, что приводит к снижению надежности и росту потребляемой мощности.
Перечисленные недостатки электромагнитных реле привели к созданию реле с герметичными магнитоуправляемыми контактами (герконами).
Простейшее герконовое реле с замыкающим контактом изображено на рис. 11.1, а. Контактные сердечники (КС) 1 и 2 изготавливаются из ферромагнитного материала с высокой магнитной проницаемостью (пермаллоя) и ввариваются в стеклянный герметичный баллон 3. Баллон заполнен инертным газом — чистым азотом или азотом с небольшой (около 3%) добавкой водорода. Давление газа внутри баллона составляет (0,4—0,6) • 10s Па. Инертная среда предотвращает окисление КС. Баллон устанавливается в обмотке управления 4. При подаче тока в обмотку возникает магнитный поток Ф, который проходит по КС 1 и 2 через рабочий зазор б между ними и замыкается по воздуху вокруг обмотки 4.
Рис. 11.2. Упрощенная картина магнитного поля геркона, управляемого обмоткой с током
Упрощенная картина магнитного поля показана на рис. 11.2. Поток Ф при прохождении через рабочий зазор создает тяговую электромагнитную силу Рэ, которая, преодолевая упругость КС, соединяет их между собой. Для улучшения контактирования поверхности касания покрываются тонким слоем (2—50 мкм) золота, родия, палладия, рения, серебра и др.
При отключении обмотки магнитный поток и электромагнитная сила спадают и под действием сил упругости КС размыкаются. Таким образом, в герконовых реле отсутствуют детали, подверженные трению (места крепления якоря в электромагнитных реле), а КС одновременно выполняют функции магнитопровода, токопровода и пружины.
В связи с тем что контакты в герконе управляются магнитным полем, герконы называют магнитоуправляемыми контактами.
На основе герконов могут быть созданы также реле с размыкающими и переключающими контактами. В герконе с переключающим контактом (рис. 11.3, а) неподвижные КС 1, 3 я подвижный 2 размещены в баллоне 4. При появлении сильного магнитного поля КС 2 притягивается к КС / и размыкается с КС 3.
Один из КС переключающего геркона (например, 2) может быть выполнен из немагнитного материала (рис. 11.3,6). Герконовое реле (рис. 11.3, в) имеет два подвижных КС 2, два неподвижных КС 5, 6 и две обмотки управления 7, 8. При согласном включении обмоток замыкаются КС / и 2. При встречном включении обмоток КС / замыкается с КС 5, а КС 2 с КС 6. При отсутствии тока в обмотках все КС разомкнуты. Герконовое реле (рис. 11.3, г) имеет переключающий контакт 3 сферической формы. При согласном включении обмоток 7 и 8 контакт 3 притягивается к КС 1 и КС 2 и замыкает их. После отключения обмоток 7 и 8 и при согласном включении обмоток 9 и 10 контакт 3 замыкает КС 5 и КС 6.
Так как КС герконов выполняют функции возвратной пружины, им придаются определенные упругие свойства. Упругость КС обусловливает возможность их вибрации («дребезга») после удара, который сопутствует срабатыванию. Длительность такой вибрации достигает 0,25 мс при общем времени срабатывания 0,5—1 мс. Одним из способов устранения влияния вибраций является использование жидкометаллических контактов. В переключающем герконе (рис. 11.4, а) внутри подвижного КС 1 имеется капиллярный канал, по которому из нижней части баллона 4 поднимается ртуть 5. Ртуть смачивает поверхности касания КС 1 с КС 2 или КС 3. В момент удара контактов при срабатывании возникает их вибрация. Из-за ртутной пленки на контактной поверхности КС / вибрация не приводит к разрыву цепи. В конструкции на рис. 11.4,6 между КС 2, К.СЗ и ртутью 5 находится ферромагнитная изоляционная жидкость 6. При возникновении магнитного поля ферромагнитная жидкость 6 перемещается вниз, в положение, при котором поток будет наибольшим. Ртуть вытесняется вверх и замыкает КС 2 и КС 3. Следует отметить, что жидкометаллический контакт позволяет уменьшить переходное сопротивление и значительно увеличить коммутируемый ток. Наличие ртути удлиняет процесс разрыва контактов, что увеличивает время отключения реле.
Управление герконом можно осуществлять и с помощью постоянного магнита. Если постоянный магнит установлен вблизи геркона, его магнитный поток замыкается через КС, которые в результате этого находятся в замкнутом состоянии. Использование постоянного магнита совместно с управляющей катушкой позволяет создать герконовое реле с размыкающим контактом.
ВЫБОР ТРАНСФОРМАТОРОВ ТОКА
Номинальное напряжение ТТ должно быть не меньше номинального напряжения сети, в которой он устанавливается. Обычно изоляция ТТ находится под воздействием фазного напряжения. Однако в энергосистемах с изолированной нейтралью при заземлении одной фазы ТТ оказывается под линейным напряжением. Наибольший возможный ток продолжительного режима работы установки высокого напряжения должен быть возможно ближе к номинальному первичному току ТТ для получения наименьшей погрешности. ТТ с вторичным током 1 А желательно применять при удаленном расположении ТТ от аппаратов релейной защиты, так как в этом случае можно допустить большее сопротивление проводников, соединяющих его с нагрузкой. Класс точности ТТ выбирается в соответствии с его назначением. ТТ с меньшей погрешностью (классы 0,5 и 1) используются для измерений. Для релейной защиты выбираются ТТ, имеющие необходимую номинальную предельную кратность.
После выбора ТТ по указанным параметрам проводится проверка его динамической и термической стойкости. Для этого необходимо знать ударный ток в месте установки ТТ и действующее значение установившегося тока КЗ. Эти величины должны быть меньше токов динамической и термической стойкости выбранного ТТ.
ТТ на малые номинальные токи хотя и имеют достаточную кратность по динамической и термической стойкости, но в абсолютных величинах эта стойкость может быть недостаточной. Поэтому часто приходится выбирать ТТ на номинальный ток, превышающий ток контролируемой установки. При этом, как правило, увеличивается погрешность, так как номинальный ток установки получается меньше номинального тока ТТ.
Для ТТ цепей релейной защиты необходимо, чтобы номинальная предельная кратность была выше отношения тока КЗ к номинальному. ТТ дифференциальной защиты должны иметь одинаковую номинальную предельную кратность.
При выборе ТТ необходимо учитывать, что его реальной нагрузкой являются не только обмотки измерительных приборов и реле, но и сопротивления соединительных проводов.
Вихревые токи
В электрических аппаратах, приборах и машинах металлические детали иногда движутся в магнитном поле или неподвижные металлические детали пересекаются силовыми линиями меняющегося по величине магнитного поля. В этих металлических деталях индуктируется ЭДС самоиндукции.
Под действием этих э. д. с. в массе металлической детали протекают вихревые токи (токи Фуко), которые замыкаются в массе, образуя вихревые контуры токов. Вихревые токи порождают свои собственные магнитные потоки, которые, по правилу Ленца, противодействуют магнитному потоку катушки и ослабляют его. Кроме того, они вызывают нагрев сердечника, что является бесполезной тратой энергии.
Пусть имеется сердечник из металлического материала. Поместим на этот сердечник катушку, по которой пропустим переменный ток. Вокруг катушки окажется переменный магнитный ток, пересекающий сердечник. При этом в сердечнике станет наводиться индуцированная ЭДС, которая, в свою очередь, вызывает в сердечнике токи, называемые вихревыми. Эти вихревые токи нагревают сердечник. Так как электрическое сопротивление сердечника невелико, то наводимые в сердечниках индуцированные токи могут оказываться достаточно большими, а нагрев сердечника - значительным.
Возниконвение токов Фуко (вихревых токов)
Впервые вихревые токи были обнаружены французским учёным Д.Ф. Араго (1786 - 1853) в 1824 г. в медном диске, расположенном на оси под вращающейся магнитной стрелкой. За счёт вихревых токов диск приходил во вращение. Это явление, названное явлением Араго, было объяснено несколько лет спустя M. Фарадеем с позиций открытого им закона электромагнитной индукции.
Вихревые токи были подробно исследованы французским физиком Фуко (1819—1868) и названы его именем. Он назвал явление нагревания металлических тел, вращаемых в магнитном поле, вихревыми токами.
Способы уменьшения токов Фуко
Мощность, затрачиваемая на нагрев сердечника вихревыми токами, бесполезно снижает КПД технических устройств электромагнитного типа.
Чтобы уменьшить мощность вихревых токов, увеличивают электрическое сопротивление магнитопровода, для этого сердечники набирают из отдельных тонких (0,1- 0,5 мм) пластин, изолированных друг от друга с помощью специального лака или окалины. В материал сердечника вводят специальные добавки, также увеличивающие его электрическое сопротивление.
Шихтованный магнитопровод трансформатора
Сердечники некоторых катушек (бобин) набирают из кусков отожженной железной проволоки. Полоски железа располагают параллельно линиям магнитного потока. Вихревые же токи, протекающие в плоскостях, перпендикулярных направлению магнитного потока, ограничиваются изолирующими прокладками. Для магнитопроводов приборов и устройств, работающих на высокой частоте, применяют магнетодиэлектрики. Чтобы снизить вихревые токи в проводах, последние изготавливают в виде жгута из отдельных жил, изолированных друг от друга.
Лицендрат - это система переплетенных медных проводов, в которой каждая жила излирована от соседних. Лицендрат предназначен для использования на высокочастотных токах для предотвращения возникновения паразитных токов и токов Фуко.
Применение токов Фуко
Полезное применение вихревые токи нашли в устройстве магнитного тормоза диска электрического счетчика. Вращаясь, диск пересекает магнитные силовые линии постоянного магнита. В плоскости диска возникают вихревые токи, которые, в свою очередь, создают свои магнитные потоки в виде трубочек вокруг вихревого тока. Взаимодействуя с основным полем магнита, эти потоки тормозят диск.
В ряде случаев, применяя вихревые токи, можно использовать технологические операции, которые невозможно применить без токов высокой частоты. Например, при изготовления вакуумных приборов и устройств из баллона необходимо тщательно откачать воздух и иные газы. Однако в металлической арматуре, находящейся внутри баллона, имеются остатки газа, которые можно удалить только после заваривания баллона. Для полного обезгаживания арматуры вакуумный прибор помещают в поле высокочастотного генератора, в результате действия вихревых токов арматура нагревается до сотен градусов, остатки газа при этом нейтрализуются.
Вихревые токи находят полезное применение также при индукционной плавке металлов и поверхностной закалке токами высокой частоты.
Виды электрических проводок
НАЗНАЧЕНИЕ:
Электрическая проводка служит для передачи и распределения электрической энергии от вводного устройства (ВУ) к потребителям. А, потребители - это наши телевизоры, холодильники, лампочки, соковыжималки и тому подобное.
УСТРОЙСТВО:
Электрические проводки бывают разных видов:
- внутренняя проводка - прокладывается внутри помещений, как жилых, так и производственных, служебных и т. п. Один из "плюсов" - не надо заботится о защите от внешних факторов: атмосферные осадки, перепады температур, ультрафиолетовое излучение от солнца (разрушает изоляционную оболочку).
- наружная проводка - прокладывается по наружным стенам зданий, сооружений, под навесами, между зданиями на опорах (не более четырех пролетов) и т. п. Принимает на себя все "минусы" улицы: дождь, ветер, обледенение, солнце, птицы и т.п.
- открытая проводка - прокладывается по поверхности стен, потолка, строительным конструкциям. Закрепляется на: изоляторах, на тросу, на металлической полосе, крепежными скобами, хомутами, в коробах, на лотках, в гофро трубе и тому подобное. Из "плюсов" - простота обслуживания и контроля состояния. Из "минусов" - портит внешний вид (малейшая не параллельность полу, потолку, не аккуратность монтажа - сразу бросается в глаза).
- скрытая проводка - прокладывается под слоем штукатурки, в полах, фундаментах, строительных полостях. "Плюс" - ее не видно и не слышно. "Минус" - чтоб найти неисправность и отремонтировать - ох как попотеется!
ПРИНЦИП ДЕЙСТВИЯ:
При монтаже надо учитывать какая электрическая нагрузка будет на проводку, чтобы не допустить перегрева проводов и возможного возгорания. То есть предусмотреть условия охлаждения провода, например, провод проложенный в трубе будет хуже охлаждаться чем провод проложенный открыто. Ну и, конечно, правильно выбрать тип провода или кабеля (сечение токоведущих жил, тип изоляции), в зависимости от условий внешней среды.
Асинхронные электродвигатели с фазным ротором
В настоящее время, на долю асинхронных двигателей приходится не менее 80% всех электродвигателей, выпускаемых промышленностью. К ним относятся и трехфазные асинхронные двигатели.
Трехфазные асинхронные электродвигатели широко используются в устройствах автоматики и телемеханики, бытовых и медицинских приборах, устройствах звукозаписи и т.п.
Достоинства асинхронных электродвигателей
Широкое распространение трехфазных асинхронных двигателей объясняется простотой их конструкции, надежностью в работе, хорошими эксплуатационными свойствами, невысокой стоимостью и простотой в обслуживании.
Устройство асинхронных электродвигателей с фазным ротором
Основными частями любого асинхронного двигателя является неподвижная часть – статор и врщающая часть, называемая ротором.
Статор трехфазного асинхронного двигателя состоит из шихтованного магнитопровода, запрессованного в литую станину. На внутренней поверхности магнитопровода имеются пазы для укладки проводников обмотки. Эти проводники являются сторонами многовитковых мягких катушек, образующих три фазы обмотки статора. Геометрические оси катушек сдвинуты в пространстве друг относительно друга на 120 градусов.
Фазы обмотки можно соединить по схеме ''звезда'' или "треугольник" в зависимости от напряжения сети. Например, если в паспорте двигателя указаны напряжения 220/380 В, то при напряжении сети 380 В фазы соединяют "звездой". Если же напряжение сети 220 В, то обмотки соединяют в "треугольник". В обоих случаях фазное напряжение двигателя равно 220 В.
Ротор трехфазного асинхронного двигателя представляет собой цилиндр, набранный из штампованных листов электротехнической стали и насаженный на вал. В зависимости от типа обмотки роторы трехфазных асинхронных двигателей делятся на короткозамкнутые и фазные.
В асинхронных электродвигателях большей мощности и специальных машинах малой мощности для улучшения пусковых и регулировочных свойств применяются фазные роторы. В этих случаях на роторе укладывается трехфазная обмотка с геометрическими осями фазных катушек (1), сдвинутыми в пространстве друг относительно друга на 120 градусов.
Фазы омотки соединяются звездой и концы их присоединяются к трем контактным кольцам (3), насаженным на вал (2) и электрически изолированным как от вала, так и друг от друга. С помощью щеток (4), находящихся в скользящем контакте с кольцами (3), имеется возможность включать в цепи фазных обмоток регулировочные реостаты (5).
Асинхронный двигатель с фазным ротором имеет лучшие пусковые и регулировочные свойства, однако ему присущи большие масса, размеры и стоимость, чем асинхронному двигателю с короткозамкнутым ротором.
Принцип работы асинхронных электродвигателей
Принцип работы асинхронной машины основан на использовании вращающегося магнитного поля. При подключении к сети трехфазной обмотки статора создается вращающееся магнитное поле, угловая скорость которого определяется частотой сети f и числом пар полюсов обмотки p, т. е. ω1=2πf/p
Пересекая проводники обмотки статора и ротора, это поле индуктирует в обмотках ЭДС (согласно закону электромагнитной индукции). При замкнутой обмотке ротора ее ЭДС наводит в цепи ротора ток. В результате взаимодействия тока с результирующим малнитным полем создается электромагнитный момент. Если этот момент превышает момент сопротивления на валу двигателя, вал начинает вращаться и приводить в движение рабочий механизм. Обычно угловая скорость ротора ω2 не равна угловой скорости магнитного поля ω1, называемой синхронной. Отсюда и название двигателя асинхронный, т. е. несинхронный.
Работа асинхронной машины характеризуется скольжением s, которое представляет собой относительную разность угловых скоростей поля ω1 и ротора ω2: s=(ω1-ω2)/ω1
Значение и знак скольжения, зависящие от угловой скорости ротора относительно магнитного поля, определяют режим работы асинхронной машины. Так, в режиме идеального холостого хода ротор и магнитное поле вращаются с одинаковой частотой в одном направлении, скольжение s=0, ротор неподвижен относительно вращающегося магнитного пол, ЭДС в его обмотке не индуктируется, ток ротора и электромагнитный момент машины равны нулю. При пуске ротор в первый момент времени неподвижен: ω2=0, s=1. В общем случае скольжение в двигательном режиме изменяется от s=1 при пуске до s=0 в режиме идеального холостого хода.
При вращении ротора со скоростью ω2>ω1 в направлении вращения магнитного поля скольжение становится отрицательным. Машина переходит в генераторный режим и развивает тормозной момент. При вращении ротора в направлении, противоположном направлению вращения магнитного поли (s>1), асинхронная машина переходит в режим противовключения и также развивает тормозной момент. Таким образом, в зависимости от скольжения различают двигательный (s=1÷0), генераторный (s=0÷-∞) режимы и режим противовключення (s=1÷+∞). Режимы генераторный и противовключения используют для торможения асинхронных двигателей.
Монтаж контактной сети
Состав и организация монтажных работ.Техническая документация и нормативные документы. Трассировка контактной сети
Процесс сооружения контактной сети включает в себя комплекс строительных работ (устройство фундаментов, установка опор и т. д.) и комплекс монтажных работ, излагаемых в настоящей главе.
Монтажные работы состоят из армировки опор, раскатки и регулировки проводов цепной подвески, монтажа контактной сети в искусственных сооружениях, секционирования контактной сети, монтажа проводов питающих и отсасывающих линий (фидеров), линий обратного тока, линий электропередачи для питания нетяговых потребителей (линии сооружаются в основном на опорах контактной сети), а также монтажа рельсовых цепей (приварки рельсовых соединителей, установки тяговых джемперов). Эти работы выполняются преимущественно силами организаций службы пути.
На вновь электрифицируемых железнодорожных линиях монтаж контактной сети производится специализированными электромонтажными поездами, имеющими в своем составе несколько прорабских пунктов, головные мастерские, гараж, склад и другие подразделения. Прорабский пункт по монтажу контактной сети, оснащенный соответствующими машинами, механизмами, подвижными единицами, технологическими и жилыми вагонами, дислоцируется на одной из станций электрифицируемой линии и осуществляет в течение года работы на участке 150—200 км развернутой длины контактной сети.
Прорабский пункт имеет 7—10 бригад, состоящих, как правило, из пяти электромонтеров каждая и возглавляемых неосвобожденными бригадирами. Иногда для производства отдельных видов работ количество людей в бригаде временно увеличивается. Работы, которые требуют меньшего количества людей, бригада выполняет звеньями в составе 2—3 чел. Во всех случаях должен быть назначен ответственный за производство работ и соблюдение правил техники безопасности.
Для ограждения места работ бригаде придается необходимое количество сигналистов. Механизмы прорабского пункта обслуживаются штатом машинистов локомотивов и их помощников, шоферами автомашины, автокрана и т. п. Передовые механизаторы совмещают профессии шофера автомашины и автокрана, помощника водителя локомотива и машиниста вагона-вышки и т. п. При наличии вагона-мастерской имеется небольшая бригада слесарей-электромонтеров.
Прорабский пункт возглавляется прорабом и одним или двумя мастерами. Эксплуатационное обслуживание машин и механизмов организует линейный механик.
Формы и методы организации монтажных работ должны преследовать цель производства их с наименьшей затратой людских и материальных ресурсов и наименьшим ущербом для движения поездов и эксплуатационной работы железной дороги при полном обеспечении безопасности работающих людей и движения поездов.
Конкретный объем работ, поручаемых электромонтажному поезду, определяется на основании технического проекта, рабочих чертежей и сметы на электрификацию данной железнодорожной линии с учетом установленных сроков ввода в эксплуатацию и возможного времени начала электромонтажных работ.
Возглавляющей весь комплекс работ организацией—генеральным подрядчиком (с участием специализированных организаций) — составляется график производства работ. Графиком определяются с учетом конкретных условий (продолжительность предоставляемых «окон» в движении поездов, возможность производства работ «с поля» без перерыва в движении поездов и т. п.) сроки и последовательность отдельных видов и этапов работы (путевое переустройство, установка опор, работы по СЦБ, связи и т. п.). В соответствии с этим графиком на основе норм выработки составляется календарный график монтажа контактной сети, предусматривающий сроки выполнения работ по элементам на каждом перегоне и станции и определяющий потребное количество рабочей силы, машин и механизмов. Одновременно составляется план и порядок снабжения материалами и оборудованием. В процессе производства работ в зависимости от сложившихся условий график корректируется с тем, чтобы электрифицируемый участок был введен в эксплуатацию в установленный срок.
Техническая документация и нормативные документы. Монтаж контактной сети выполняется по утвержденному техническому проекту и рабочим чертежам, подписанным заказчиком к производству работ. Рабочце чертежи состоят в основном из планов контактной сети станций и перегонов (рис. 1 и 2), планов питающих, отсасывающих и других проводов, проходящих по отдельным трассам, схемы секционирования контактной сети.
Монтаж отдельных элементов контактной сети и изготовление конструкций, (армировка опор, крапление проводов к поддерживающим конструкциям, анкеровка проводов, изготовление консолей и т. п.) производятся по чертежам типовых альбомов с применением типовых деталей. На узлы и конструкции, не охватываемые типовыми альбомами, выдаются отдельные рабочие чертежи.
При работах необходимо руководствоваться действующими директивными документами, основными из которых являются Правила технической эксплуатации железных дорог, Технические условия проектирования электрификации железных дорог нормальной колеи на постоянном токе 3 ООО в, Технические условия на проектирование электрификации железных дорог, Технические условия производства и приемки строительных и монтажных работ при электрификации железных дорог (устройства энергоснабжения), Правила содержания контактной сети электрифицированных железных дорог.
Все работы должны выполняться с соблюдением Правил техники безопасности при производстве работ по монтажу контактной сети, Инструкции по движению поездов и Инструкции по сигнализации на железных дорогах, а также с полным обеспечением безопасности людей и движения поездов.
Трассировка контактной сети. До начала работ и перед приемкой опор под монтаж контактной сети следует тщательно рассмотреть рабочие чертежи разбивки опор и размещения на них проводов и конструкций, обратив особое внимание на следующие положения.
С целью снижения стоимости строительства (или в связи со стесненностью территории, особенно на станциях) на опорах контактной сети, кроме проводов цепной подвески, как правило, подвешиваются провода и других линий: продольных линий электропередачи для питания нетяговых потребителей, освещения, дистанционного управления разъединителями контактной сети, а также питающих и отсасывающих фидеров, линий обратного тока и т. п. На опорах контактной сети размещаются секционные разъединители, иногда светофоры автоблокировки и другие конструкции. Подвеска проводов различного назначения и размещение конструкций на опорах нередко предусматриваются разными чертежами, сравнением которых необходимо убедиться, что все провода, кронштейны, консоли и другие конструкции размещаются с соблюдением допустимых между ними габаритов.
Переходные опоры смежных путей устанавливаются с учетом возможности эксплуатационного обслуживания контактной сети одного пути при наличии напряжения на другом (расстояния между находящимися под напряжением частями контактной сети соседних путей должны быть не менее 0,8 м при постоянном токе и 1,5 ж при переменном) и возможности поворота на 90° консоли одного пути, не задевая смежную консоль. Для обеспечения этих условий при консолях с фиксаторными стойками переходные опоры соседних путей устанавливаются не в створе, а со смещением относительно друг друга на 2—3 м. У переездов опоры располагаются так, чтобы расстояние от края проезжей части до опоры, ее подкоса или оттяжки было не менее 5 м..
Провода линий, пересекающих контактную сеть, располагаются возможно ближе к середине пролета между опорами контактной сети. Не следует допускать установки опор под проводами пересекающих линий, подлежащих переустройству вследствие своей негабаритное™, так как это препятствует установке опор до переустройства перехода.
Высота надземной части опор и высота расположения пяты консоли должны обеспечить требуемые габариты контактной сети, в том числе и в случае последующей подъемки пути во время его капитального ремонта. Эти данные указываются на плане контактной сети или берутся у дорожных организаций.
На станциях направление анкерных участков должно по возможности совпадать с направлением централизованных маршрутов. Каждый анкерный участок должен охватывать возможно меньшее количество стрелок. Следует избегать пересечения одним анкерным участком обеих горловин станции, пересечение же при этом и главных путей является крайне нежелательным. Кроме осложнения монтажа, в случае обрыва проводов в эксплуатации это вызовет увеличение размеров повреждения и затяжку сроков его ликвидации. По этим же причинам пересечение главных путей нерабочими отходами проводов станционных путей следует допускать лишь в исключительных случаях; анкерные участки главных путей желательно предусматривать самостоятельными, без электрификации ими станционных путей. Отдельно стоящие опоры для размещения других проводов, кроме цепной подвески, должны применяться лишь в случае невозможности использования для этой цели опор контактной сети.
При пересечении гибкими поперечинами значительного количества путей, требующих установки опор в междупутье, следует стремиться к установке их в створе с крайними опорами (трехопорные и четырехопорные гибкие поперечины) вместо перекрытия электрифицируемых путей несколькими отдельными гибкими поперечинами. Это сократит количество потребных дорогостоящих опор и фундаментов и, кроме того, при значительных повреждениях контактной сети, связанных с повреждением опор, облегчит ее рос-становление. В ряде случаев, применяя временные оттяжки на крайних опорах, удается восстановить движение без установки в междупутье опор взамен поврежденных, а при необходимости установки новых опор для восстановления контактной сети уменьшить их количество.
Изменения, которые целесообразно внести в рабочие чертежи, согласовываются с проектной организацией или заказчиком.