- •3. Фактори (чинники) водного середовища та їх дія на гідробіонтів
- •2. Гідрофізичні фактори водних екосистем
- •Лекція 4 Тема: Абіотичні фактори водних екосистем
- •Седиментація, осадоутворення та формування донних грунтів.
- •Іонні компоненти та їх екологічна роль.
- •Класифікація донних грунтів за розміром частинок та вмістом фракцій (величиною менше 0,01 мм)
- •2. Іонні компоненти та їх екологічна роль
- •Лекція 5 Тема: Абіотичні фактори водних екосистем
- •Діоксид вуглецю в водних екосистемах
2. Гідрофізичні фактори водних екосистем
До гідрофізичних факторів водних екосистем належить перш за все сама вода, як життєве середовище, її температурний і термічний режим, наявність завислих і розчинених речовин та характер донних грунтів.
Фізнко-хімічні властивості води та їх екологічне значення
Вода - найважливіша середовищеутворююча речовина, вплив якої на життєдіяльність організмів багатосторонній. Саме завдяки особливим властивостям води як універсального розчинника неорганічних і органічних речовин вона стала середовищем зосередження життя на Землі.
Молекулярна структура води, здатність до утворення розчинів неорганічних і органічних електролітів, слабка іонізація, питома теплоємність, велика прихована теплота плавління та пароутворення роблять воду особливо придатною для тієї ролі, яку вона відіграє в водних екосистемах взагалі та для їх біологічних компонентів зокрема.
Вода - рідина без запаху, смаку і кольору, щільністю 1,000 г/см3 при температурі 3,98°С. При 0°С перетворюється у лід, а при 100°С - у пару. Молекула води складається з двох атомів водню і одного атома кисню. У природі існує шість ізотопних форм кисню і три - водню.
При взаємодії з іонами вода утворює гідратну оболонку. Під гідратацією розуміють суму енергетичних і структурних змін, які відбуваються у системі в процесі переходу газоподібних молекул та іонів в рідке середовище з утворенням розчину певного складу.
Під впливом температури та деяких хімічних чинників вода може дисоціювати (іонізуватись) на протилежно заряджені іони водню ЕҐ та гідроксил ОН . При цьому при взаємодії одного з цих іонів з іншими речовинами вода може перетворитись із нейтральної у кислу (переважають
Н*) або лужну (переважають негативно заряджені гідроксильні іони ОН ).
Саме
цим пояснюється те, що при підігріванні
води й реакція зміщується
в кислу сторону за рахунок збільшення
позитивно заряджених
водневих іонів.
Такі особливості води необхідно враховувати при оцінці можливого впливу температури, іонного складу та розчинених газів не тільки на п фізико-хімічні властивості, але й на біологічні рідини організмів гідробіонтів, які постійно пристосовуються до коливань абіотичних факторів середовища.
Щільність води
Під щільністю розуміють масу одиничного об’єму води - кг/м . Вона залежить від температури, наявності розчинних солей, а також від атмосферного тиску та вищерозташованих мас води.
Найбільша щільність хімічно чистої води, яка практично не має розчинних солей, при температурі 3,98 дорівнює 1 г/см . Із зниженням температури до 0°С, коли вода ще не перетворилась у лід, її щільність становить 998,87 кг/м3. При переході у стан льоду вона відразу зменшується до 916,7 кг/м3. Падає щільність і при підвищенні температури води вище 4°С. При досягненні 30°С вона становить 995,67 кг/ м3.
На щільність води впливає, крім температури, також кількість розчинених солей. Із зростанням мінералізації дещо підвищується і щільність води. Але між температурою, мінералізацією і щільністю води немає лінійної залежності. Тобто, щільність води зменшується в меншій мірі, ніж це можна було чекати від ступеню зростання температури води і її мінералізації. Така властивість води обумовлює виключно важливу її роль в забезпеченні стійкості водних екосистем та підтриманні якості води. Наприклад, при змішуванні вод різної температури і мінералізації утворюється змішана вода, яка має дещо більшу щільність, ніж кожна з них окремо. Так, при надходженні морської солоної води в Дніпровсько-Бузький лиман, де вона змішується з прісною, спостерігається ущільнення річкової води, що і обумовлює її зосередження переважно у придонних шарах. Перехідна зона між окремими масами води, які мають різну температуру і солоність і в якій спостерігається ущільнення вод, називається гідрологічним фронтом. Така зона може виявлятись на межі між прісними і солоними водами у гирлах річок (естуарний фронт), які впадають у море.
Завдяки таким процесам відбувається міграція біогенних елементів з донних відкладів у фотичний шар води (шар води, в якому достатня кількість світла для синтезу рослинами органічної речовини з використанням сонячної енергії) і як наслідок, активізація продукційної діяльності фітопланктону, зростання біомаси як фіто-, так і зоопланктону. Фактор щільності води відіграє дуже важливу роль у житті пелагічних організмів.
Найбільші коливання щільності води спостерігаються в місцях гідрофронтів в екотонних екосистемах, розташованих на межі змішування морських солоних і прісних вод, що надходять з річковим стоком.
Гідробіонти дуже чутливі як до зміни щільності, так і тиску води. Встановлено, що із збільшенням глибини прісних водойм на 10,3 м при
температурі 4°С тиск зростає на 1 атмосферу. Для солоних морських вод цей показник дещо менший. Так. на одну атмосферу тиск підвищується у морях вже на глибині 9,986 м. Така різниця прісних і солоних вод пояснюється більш високою концентрацією солей у морській вода. На великих глибинах океанів тиск може зростати у порівнянні з поверхнею більше, ніж на 1000 атмосфер.
2.3. Кольоровість води
Колір природних вод залежить від власного кольору розчинених у ній речовин, завислих частинок та мікроорганізмів, що населяють водну товщу. Забарвлення води зумовлено взаємовідносинами між водним середовищем, берегами водойми та метеорологічними факторами. На колір води впливають завислі речовини алохтонного и автохтонного походження.
Власний колір води (блакитний) виявляється лише у воді деяких чистих гірських озер. Цей колір залежить від вибіркового поглинання променів сонячного спектру: найперше у воді затухають найдовші світові хвилі (червоної частини спектру), а останніми - короткі хвилі його синьої частини. Сонячне світло, проходячи через воду, звільняється від червоних променів, поступово перетворюючись з білого в синій.
Природні води можуть мати зелене, жовте, буре і навіть чорне забарвлення, що зумовлено переважно наявністю гумінових речовин.
Крім того, колір води часто змінюється внаслідок масового розвитку тих чи інших планктонних організмів (“цвітіння”). Це так зване вегетаційне забарвлення. Зокрема при “цвітінні” синьозеленими водоростями вода набуває відповідного кольору, а при їх розкладі - навіть темносинього, внаслідок виділення пігментів фікоціану і фікобілінів; зелені водорості забарвлюють воду в зелений колір, діатомові надають їй жовтуватого відтінку; Dunaliella salina (дуналіела солоноводна), Euglena rubra (червона евглена) та Primnesium parvum (примнезій маленький ) - червоного кольору.
Температурний та термічний режим водних об’єктів
Температурний режим водних об’єктів - це зміна температури води по акваторії і глибині на протязі певного проміжку часу. Коливання температури води у водних екосистемах можуть бути добові, місячні, сезонні, річні та багаторічні. У таких випадках говорять про середньодобову, середньомісячну та середню температуру за ряд років. Температура визначає особливості термічного режиму водойм. Під останнім розуміють не тільки режим температури, але й запаси тепла, які утримуються водними масами. Якщо відома кількість води, що міститься у водному об’єкті та її середньодобова (або за інший проміжок часу) температура, то можна підрахувати його теплозапас - кількість тепла, акумульованого у водному об’єкті, яке перевищує його величину при температурі 0°С.
Прогрівання водойм відбувається за рахунок надходження на поверхню води сонячної енергії. Від температури водної поверхні залежить теплообмін з більш глибокими придонними шарами води. При цьому,
внаслідок нерівномірного нагрівання і охолодження води, на різних глибинах відбувається розшарування водної товщі водойм спочатку за фізичними властивостями, а потім і за хімічними та біологічними характеристиками. Зміни температури води по акваторії і глибині бувають внутрішньодобові, сезонні, річні та багаторічні. Вони залежать, в першу чергу, від режиму надходження та поглинання сонячної енергії. Нагрітий поверхневий шар води перемішується з більш глибокими шарами за рахунок різноманітних гідродинамічних процесів.
Температурний режим водойм включає періоди денного та весняно- літнього нагрівання та нічного і осінньо-зимового охолодження. Завдяки таким коливанням температури відбувається динамічне перемішування водних мас. При цьому періоди нагрівання і охолодження поверхневого шару призводять до формування на певній глибині шару температурного стрибка, або термоклину, щільність води в якому зростає. Водна маса у водоймах має характер стратифікованої тришарової гідрологічної структури, яка включає верхній прогрітий шар води (епілімніон), середній шар стрибка температури (металімніон) та нижній, найбільш холодний (гіполімніон). Таким чином, зона температурного стрибка, або термоклин, є шаром води, у якому вертикальні градієнти температури більш виражені у порівнянні з градієнтами вище або нижче розташованих шарів води. Він утворюється в глибоких озерах, водосховищах, морях і океанах. У таких стратифікованих озерах і водосховищах погіршується обмін речовин і енергії між епі- і гіполімніоном.
Період температурної стратифікації, при якому не відбувається циркуляція вод, називається стагнація. Стагнація вод в озерах та інших водоймах з повільною течією води може спостерігатись у зимовий і літній періоди року.
В період зимової стагнації більш тепла вода концентрується в придонних шарах, в період літньої - навпаки. Під час стагнації виникає киснева дихотомія, при якій вміст кисню в поверхневих шарах води значно більший, ніж у глибинних.
Температурна стратифікація водойм є важливим екологічним фактором. В залежності від сезону року на різних глибинах від поверхні до дна водойм міняється температура води. Влітку вона більш холодна із заглибленням, а взимку навпаки, більш тепла. При такій загальній тенденції сезонних змін температури води відзначаються і деяьсі особливості зимового періоду у температурній стратифікації водойм.
Світло та його роль у функціонуванні водних екосистем
Світло надходить до земної поверхні у вигляді прямої і розсіяної сонячної радіації, які разом оцінюються як сумарна радіація. На її видиму частину спектру припадає близько 45 %, на інфрачервоне випромінювання — 45 %, а на ультрафіолетове - 7 %. Сонячна радіація є джерелом всіх процесів у біосфері, пов’язаних з життям на нашій планеті, та визначає її температуру в поверхневих шарах.
Потік сонячної радіації на одиницю поверхні Землі називається сонячною постійною. Потужність цього потоку становить 340 Вт/ м2.
Далеко не вся сонячна радіація надходить до земної (водної) поверхні. Більша частина короткохвильового діапазону сонячного світла (менше 290 нм) поглинається озоновим шаром. Довгохвильова частина сонячного випромінювання частково затримується в атмосфері водяною парою, вуглекислим газом і озоном. Та ж, яка доходить до Землі, теж частково відбивається від її поверхні.
Відношення кількості радіації, яка відбивається до тієї, яка падає на поверхню, визначається у відсотках і має назву альбедо. Для відкритої водної поверхні воно становить в середньому 7 %. Альбедо дещо збільшується при посиленні хвилювання на водоймі, а також при збільшенні каламутності води. Найбільше альбедо має чистий сніговий покрив (95-98 %), дещо менше (25^45 %) - лід. Альбедо є важливим екологічним показником, який дозволяє розраховувати кількість сонячної енергії, яка надходить в водне середовище.
Важливою з екологічної точки зору властивістю води є здатність пропускати сонячне світло. Вона залежить від кольору води та її прозорості. Остання залежить від молекулярної структури, концентрації розчинених органічних, переважно забарвлених (гумінові кислоти, фульвокислоти тощо) речовин, завислих часток та планктонних організмів. При гідроекологічних дослідженнях визначають відносну прозорість води за допомогою білого диску (диску Цеккі). Відносна прозорість оцінюється за товщиною шару води, через який можна бачити цей диск (діаметром ЗО см) при зануренні його з тіньового боку плавзасобів. За допомогою такого методу можна оцінювати відносну прозорість води з точністю до 5%.
В лабораторних умовах для аналізу санітарно-гігієнічних характеристик води її прозорість визначають за висотою стовпа води в мірному циліндрі, через який можна бачити стандартний шрифт. Сучасні оптичні прилади (прозороміри) дозволяють реєструвати інтенсивність проникнення сонячної радіації на різні глибини за допомогою фотоелементів.
Прозорість води змінюється в залежності від сезону, кількості завислих часток, глибини водойм та багатьох інших причин. У нестратифікованих водоймах прозорість води знижується у придонному шарі внаслідок зростання каламутності, яка пов’язана з порушенням донних грунтів; у стратифікованих найбільша прозорість води у гіполімніоні, а найменша - у зоні максимального розвитку фітопланктону. Знижується прозорість води в зоні термоклину за рахунок більш високої її щільності та затримки детриту.
