
- •10. Основные этапы развития естествознания. Развитие науки в эпоху Античности и Средних веков.
- •18. Детерминизм и индетерминизм. Динамические и статистические закономерности в природе.
- •28. Синергетика – теория самоорганизации. Закономерности самоорганизации.
- •30. Классическая модель Вселенной и космологические парадоксы.
- •32. Космологические модели Эйнштейна и Фридмана.
- •33. Концепция Большого взрыва и Горячей Вселенной.
- •34. Современная астрономия об объектах Вселенной.
- •41. Концепции и теории эволюции Земли.
- •43. Уровни организации живой материи и их характеристика.
- •48. Понятие биосферы и её структура. Концепция ноосферы Вернадского.
- •49. Географическая оболочка Земли и её ресурсный потенциал.
- •50. Перспективы развития естествознания XXI века.
28. Синергетика – теория самоорганизации. Закономерности самоорганизации.
(от греч. synergeia — сотрудничество, содействие, соучастие) — междисциплинарное направление научных исследований, в рамках которого изучаются общие закономерности процессов перехода от хаоса к порядку и обратно (процессов самоорганизации и самопроизвольной дезорганизации) в открытых нелинейных системах физической, химической, биологической, экологической, социальной и др. природы. Термин «С.» был введен в 1969 Г. Хакеном. С. как научное направление близка к ряду др. направлений, таких, как нелинейная динамика, теория сложных адаптивных систем, теория диссипативных структур (И. Пригожин), теория детерминированного хаоса, или фрактальная геометрия (Б. Мандельброт), теория автопоэзиса (X. Матурана и Ф. Варела), теория самоорганизованной критичности (П. Бак), теория нестационарных структур в режимах с обострением (А.А. Самарский, С.П. Курдюмов). Термин «С.» иногда используется как обобщенное название научных направлений, в рамках которых исследуются процессы самоорганизации и эволюции, упорядоченного поведения сложных нелинейных систем. С. можно рассматривать как современный этап развития идей кибернетики (Н. Винер, У.Р. Эшби) и системного анализа, в т.ч. построения общей теории систем (Л. фон Берталанфи). Суть подхода С. заключается в том, что сложноорганизованные системы, состоящие из большого количества элементов, находящихся в сложных взаимодействиях друг с другом и обладающих огромным числом степеней свободы, могут быть описаны небольшим числом существенных типов движения (параметров порядка), а все прочие типы движения оказываются «подчиненными» (принцип подчинения) и могут быть достаточно точно выражены через параметры порядка. Поэтому сложное поведение систем может быть описано при помощи иерархии упрощенных моделей, включающих небольшое число наиболее существенных степеней свободы. В замкнутых, изолированных и близких к равновесию системах протекающие процессы, согласно второму началу термодинамики, стремятся к тепловому хаосу, т.е. к состоянию с наибольшей энтропией. В открытых системах, находящихся далеко от состояний термодинамического равновесия, могут возникать упорядоченные пространственно-временные структуры, т.е. протекают процессы самоорганизации. Структуры-аттракторы показывают, куда эволюционируют процессы в открытых и нелинейных системах. Для всякой сложной системы, как правило, существует определенный набор возможных форм организации, дискретный спектр структур-аттракторов эволюции. Критический момент неустойчивости, когда сложная система осуществляет выбор дальнейшего пути эволюции, называют точкой бифуркации. Вблизи этой точки резко возрастает роль незначительных случайных возмущений, или флуктуаций, которые могут приводить к возникновению новой макроскопической структуры. Структуры самоорганизации, обладающие свойством самоподобия, или масштабной инвариантности, называют фрактальными структурами. Будучи междисциплинарным направлением исследований, С. влечет за собой глубокие мировоззренческие следствия. Возникает качественно иная, отличная от классической науки картина мира. Формируется новая парадигма, изменяется вся концептуальная сетка мышления. Происходит переход от категорий бытия к со-бытию, событию; от существования к становлению, сосуществованию в сложных эволюционирующих структурах старого и нового; от представлений о стабильности и устойчивом развитии к представлениям о нестабильности и метастабильности, оберегаемом и самоподдерживаемом развитии (sustainable development); от образов порядка к образам хаоса, генерирующего новые упорядоченные структуры; от самоподдерживающихся систем к быстрой эволюции через нелинейную положительную обратную связь; от эволюции к коэволюции, взаимосвязанной эволюции сложных систем; от независимости и обособленности к связности, когерентности автономного; от размерности к соразмерности, фрактальному самоподобию образований и структур мира. В новой синергетической картине мира акцент падает на становление, коэволюцию, когерентность, кооперативность элементов мира, нелинейность и открытость (различные варианты будущего), возрастающую сложность формообразований и их объединений в эволюционирующие целостности. С. придает новый импульс обсуждению традиционных филос. проблем случайности и детерминизма, хаоса и порядка, открытости и цели эволюции, потенциального (непроявленного) и актуального (проявленного), части и целого. 29. Космология – наука о Вселенной в целом. Геоцентрическая и гелиоцентрическая модели Вселенной.
КОСМОЛОГИЯ
(от греч. — мир, Вселенная и — учение), область науки, в которой изучаются Вселенная как целое и космич. системы как её части. Древнейшие космологич. представления нашли отражение в мифах, становление же науч. К. было подготовлено победой гелиоцентризма над геоцентризмом и открытием закона всемирного тяготения. Совр. К. основана на общей теории относительности (теории тяготения) А. Эйнштейна, принципы релятивистской К. (теории расширяющейся Вселенной) сформулированы в 20-х гг. 20 в. сов. математиком А. А. Фридманом и др., важнейшими наблюдат. подтверждениями являются закон красного смещения, открытый амер. астрономом Э. Хабблом в 1929, и реликтовое излучение, открытое в 1965. К нач. 80х гг. 20 в. происходит всё более тесное смыкание К. с физикой элементарных частиц на основе единой теории существующих в природе сил (электромагнитных, сильных, слабых и гравитационных).
К. стремится объяснить совр. состояние Вселенной (Метагалактики) как результат необходимого и закономерного развития, последовавшего за произошедшим 10—20 млрд. лет назад изначальным взрывом. В ходе расширения, продолжающегося и в наст. время, менялись физич. условия (температура, плотность вещества и др.), сформировались элементарные частицы, атомы, звёзды, планеты, галактики и их системы. Эти процессы в принципе описываются известными законами физики, за исключением первых малых долей секунды от начала расширения, за крые, с т. зр. совр. науки, Вселенная прошла богатую событиями многоэтапную эволюцию. Для её описания совр. физика, вероятно, должна быть обобщена, в частности в направлении объединения квантовой теории и общей теории относительности. К. нащупывает подходы и к пониманию природы изначального взрыва. Вопрос о том, будет ли расширение продолжаться беспредельно или сменится сжатием, остаётся пока открытым. Его решение зависит от знания соотношения величин средней плотности вещества и скорости расширения, которые пока известны недостаточно точно. Вследствие этого неясно также, является ли безграничное пространство Вселенной замкнутым (конечным) или открытым (метрически бесконечным). Развитие К. оказывает существ. влияние на эволюцию совр. картины мира. ГЕЛИОЦЕНТРИЧЕСКАЯ И ГЕОЦЕНТРИЧЕСКАЯ СИСТЕМЫ МИРА- два противоположных учения о строении солнечной системы и движении ее тел. Согласно гелиоцентрич. системе мира (от греч. ἥλιος -Солнце), Земля, вращающаяся вокруг собств. оси, является одной из планет и вместе с ними обращается вокруг Солнца. В противоположность этому геоцентрич. система мира (от греч. γῆ -Земля) основана на утверждении о неподвижности Земли, покоящейся в центре Вселенной; Солнце, планеты и все небесные светила обращаются вокруг Земли. Борьба между этими двумя концепциями, приведшая к торжеству гелиоцентризма, наполняет собой историю астрономии и имеет характер столкновения двух противоположных филос. направлений. Гелиоцентрич. система мира является неотъемлемой частью совр. науч. картины мира. Она стала привычным, вошедшим даже в обыденное сознание фактом. Простейшие опыты с маятником Фуко и гироскопич. компасами наглядно демонстрируют вращение Земли вокруг своей оси. Аберрация света и параллакс неподвижных звезд доказывают вращение Земли вокруг Солнца. Но за этой простотой, за этой очевидностью лежат два тысячелетия напряженной и жестокой борьбы сил прогресса и реакции. Эта борьба еще раз свидетельствует о сложности и противоречивости процесса познания.