Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
матем реш.docx
Скачиваний:
0
Добавлен:
01.04.2025
Размер:
486.02 Кб
Скачать
  1. Третье достаточное условие экстремума и перегиба.

Теорема 9.9. Пусть

- n ≥ 1 - целое число

- функция имеет производную порядка n в некоторой окрестности точки с и производную порядка n + 1 в самой точке с

- справедливы следующие соотношения:

(2)

Тогда, если n является четным числом, график функции имеет перегиб в точке M(c, f(c)). Если же n является нечетным числом и, кроме того, , функция имеет локальный экстремум в точке с, точнее, локальный минимум при и локальный максимум при .

Доказательство. (для случая экстремума)

Пусть n ≥ 1 является нечетным числом и . Т. к. при n = 1 теорема совпадает с Теоремой 9.2, то достаточно провести доказательство для нечетного n ≥ 3. Для определенности проведем рассуждения для случая . Для случая они проводятся аналогично.

Из условия и из Теоремы 8.9 (Теорема 8.9. Если функция f(x) дифференцируема в точке с и , то эта функция возрастает (убывает) в точке с.), примененной к вытекает, что эта функция возрастает в точке с. Т. к., кроме того, , то это означает, что найдется достаточно малая окрестность точки с, в пределах которой отрицательна слева от с и положительна справа от с. Разложим f'(x) в окрестности точки с в ряд Тейлора с остаточным членом в форме Лагранжа. Мы получим, что для всех x из достаточно малой окрестности точки с между с и x найдется точка ξ такая, что

(3)

Соотношения (2) и условие позволяют переписать (3) в виде

(4)

Т. к. ξ всегда лежит между c и x, то для всех x из достаточно малой окрестности точки с производная отрицательна при и положительна при . При нечетном n число n - 1 является четным, а поэтому вся правая (а, следовательно, и левая) часть (4) для всех x из достаточно малой окрестности с отрицательна слева от с и положительна справа от с.

На основании Теоремы 9.1 это означает, что функция f(x) имеет локальный минимум в точке с.

Случай рассматривается совершенно аналогично.

Вторая часть теоремы доказана.

21 Выпуклость и вогнутость графика функции. Достаточное условие выпуклости и вогнутости графика функции.

Выпуклость и вогнутость

        свойство графика функции у = f (x) (кривой), заключающееся в том, что каждая дуга кривой лежит не выше (не ниже) своей хорды; в первом случае график функции f (x) обращён выпуклостью книзу (вогнутостью кверху) и сама функция называется выпуклой (рис. 1, а), во втором — график обращён вогнутостью книзу (выпуклостью кверху) и функция называется вогнутой (рис. 1, б). Если существуют производные f '(x) и f "(х), то первый случай имеет место при условии, что f "(x) ≥ 0, а второй при f "(x) ≤ 0 (во всех точках рассматриваемого промежутка). Выпуклость (книзу) можно охарактеризовать также тем, что дуга кривой лежит не ниже касательной, в окрестности любой своей точки (рис. 2, a), а вогнутость (книзу) — тем, что дуга кривой лежит не выше касательной (рис. 2, б). Аналогично определяются В. и в. поверхности.

        

        Рис. 1 к ст. Выпуклость и вогнутость.

        

        Рис. 2 к ст. Выпуклость и вогнутость.

Определение.

Дифференцируемая функция называется выпуклой вниз на интервале Х, если ее график расположен не ниже касательной к нему в любой точке интервала Х.

Определение.

Дифференцируемая функция называется выпуклой вверх на интервале Х, если ее график расположен не выше касательной к нему в любой точке интервала Х.

Выпуклую вверх функцию часто называют выпуклой, а выпуклую вниз – вогнутой.

Посмотрите на чертеж, иллюстрирующий эти определения.

Достаточное условие вогнутости ( выпуклости ) функции.

Пусть функция f ( x ) дважды дифференцируема ( имеет вторую производную ) на интервале ( a, b ), тогда:

если  f '' ( x ) > 0 для любого x ( a, b ), то функция  f ( x ) является вогнутой на интервале ( a, b );

если  f '' ( x ) < 0 для любого x ( a, b ), то функция  f ( x ) является выпуклой на интервале ( a, b ) .

22 Точки перегиба. Необходимое условие перегиба. Критические точки второго рода.

Точка, при переходе через которую функция меняет выпуклость на вогнутость или наоборот, называется точкой перегиба. Отсюда следует, что если в точке перегиба  x0  существует вторая производная  f '' ( x0 ), то  f '' ( x0 ) = 0.

П р и м е р .

Рассмотрим график функции  y = x3 :

Эта функция является вогнутой при  x > 0  и выпуклой при  x < 0. В самом деле,  y'' = 6x, но 6x > 0 при  x > 0  и  6x < 0  при  x < 0, следовательно,  y'' > 0 при x > 0 и  y'' < 0 при x < 0, откуда следует, что функция  y = x3 является вогнутой при  x > 0 и выпуклой при x < 0. Тогда  x = 0 является точкой перегиба функции  y = x3.