
- •Глава 1: Проценты 6
- •Глава 2: Арифметическая и геометрическая прогрессии 13
- •Глава 3: Геометрические построения в орнаментах и мозаиках 21
- •Глава 4: Пропорции 41
- •Глава 5: Немного о математике храмов Древней Руси (XI-xiIвв.) 57
- •Глава 7: Измерение фигур 76
- •Глава 8: Метод координат 87
- •Глава 9: Функции и графики 103
- •Глава 10: Конические сечения (коники). Кривые 2-го порядка 111
- •Глава 11: Непрерывность функции. Производная и кривизна 122
- •Глава 12: Интегральное исчисление 133
- •Глава 1 Проценты
- •Понятие процента
- •Абсолютная и относительная погрешность
- •Проценты вокруг нас
- •Применение процентов в банковской практике. Начисление процентов на вклад по простой и сложной схеме
- •Использование приближенных формул и таблиц, когда n велико
- •Сравнение сложной и простой схемы
- •Глава 2 Арифметическая и геометрическая прогрессии Метод полной индукции
- •Арифметические прогрессии
- •Геометрическая прогрессия
- •Бесконечные прогрессии
- •Примеры из финансовых расчетов
- •Глава 3 Геометрические построения в орнаментах и мозаиках Основные построения с помощью циркуля и линейки
- •Деление окружности на равные части с помощью циркуля и линейки
- •Построение логарифмической спирали
- •Построение узоров в круге на основе сеток
- •Движения на плоскости – перенос, поворот на угол , симметрии
- •Симметрия в орнаментах
- •Розетки
- •Бордюры
- •Решетки
- •Симметричные мозаики (паркеты)
- •Глава 4 Пропорции Понятие пропорции
- •Преобразование подобия. Гомотетия
- •Пропорция . Нормальный полиграфический лист
- •Метод «квадрата и его диагонали» в русской архитектуре. Восьмерики
- •Средние значения двух величин
- •Золотое сечение (деление отрезка в среднем и крайнем отношении)
- •Последовательность Фибоначчи и золотое сечение
- •Спираль Дюрера и «золотые» треугольники
- •"Золотая" пропорция и правильные многоугольники
- •«Золотая» прогрессия. «Золотые» модулеры
- •Производные «золота»
- •Глава 5 Немного о математике храмов Древней Руси (XI-xiIвв.)
- •Геометрические построения, применявшиеся древними мастерами
- •Некоторые стандарты планировки интерьера храма
- •Построение “золотого” плана циркулем и линейкой
- •Двухстолпный и бесстолпный храмы
- •План четырехстолпного храма
- •Глава 6 Размерение сооружений, имеющих "золотые" пропорции Модулер Корбюзье
- •Меры древней Руси
- •Глава 7 Измерение фигур
- •Измерение температуры
- •Тригонометрические функции
- •Решение треугольников
- •Площади плоских фигур
- •Многогранники
- •Правильные многогранники
- •Правильные пирамиды
- •Египетские пирамиды
- •Объемы фигур
- •Площади боковых поверхностей
- •Глава 8 Метод координат
- •Декартовы координаты
- •Векторы на плоскости
- •Полярная система координат
- •Связь между декартовыми координатами и полярными
- •Линии и их уравнения
- •Уравнение спирали Архимеда
- •Уравнение логарифмической спирали
- •Декартова система координат в трехмерном пространстве
- •Векторы в трехмерном пространстве
- •Сферические координаты
- •Сферические координаты в географии.
- •Орнаменты на сфере. Изогнутые крыши
- •Глава 9 Функции и графики Понятие функции
- •Четные и нечетные функции.
- •Периодические функции.
- •Монотонные функции.
- •Элементарные функции
- •Операции над графиками двух функций
- •Уравнение прямой на плоскости
- •Изменение уравнения линии при изменении системы координат
- •Глава 10 Конические сечения (коники). Кривые 2-го порядка Гипербола
- •Парабола
- •Эллипс как сжатая окружность. Каноническое уравнение эллипса
- •Построение овала с помощью циркуля и линейки. Характеристический прямоугольник. Фокусы эллипса
- •Эксцентриситет эллипса и параболы
- •Конические сечения
- •Кривые второго порядка
- •Проекции и конические сечения
- •Поверхности второго порядка в пространстве
- •Шары, эллипсоиды, конусы, цилиндры, параболоиды, гиперболоиды
- •Прямолинейные образующие
- •Глава 11 Непрерывность функции. Производная и кривизна Понятие предела
- •Непрерывность функции. Точки разрыва функции
- •Производная и ее геометрический смысл
- •Основные правила дифференцирования
- •Производные высших порядков
- •Роль производных в приближенных вычислениях
- •Производная и скорость изменения функции. Скачок производной
- •Знак производной и монотонность функции. Обращение производной в ноль
- •Выпуклость и вогнутость графика функции. Точки перегиба
- •Выпуклые, вогнутые и кровли с перегибом
- •Кривизна дуги
- •Глава 12 Интегральное исчисление Неопределенный интеграл
- •Основные методы интегрирования
- •Определенный интеграл. Задача о площади
- •Вычисление определенного интеграла
- •Основные свойства определенного интеграла.
- •Вычисление длин дуг.
- •Вычисление площади и длины дуги в полярных координатах
- •Вычисление длины окружности и площади круга и эллипса
- •Объем тела вращения
- •Площадь поверхности вращения
- •Ответы к задачам
- •Глава 1
- •Глава 2
- •Приложение
- •Изображение окружности и шара
- •Гирлянды (парабола)
- •Формулы
Глава 11 Непрерывность функции. Производная и кривизна Понятие предела
Рассматривая вопрос о сумме бесконечно убывающей геометрической прогрессии, о вычислении длины окружности, площади круга и поверхностей и объемов круглых тел, мы уже пользовались понятием предела. Дадим точное определение предела. Пусть задана бесконечная последовательность чисел a1, a2, a3,…,an,… Если по мере возрастания номера n члены значения членов последовательности приближаются к некоторому числу а так, что абсолютная величина разности |an-a| становится меньше любого наперед заданного числа, то число а называют пределом числовой последовательности an при возрастании аргумента (номера) n. Это кратко записывают так:
или
или просто ana
Например,
или
Величина an, стремящаяся к 0 при бесконечном возрастании n, называется бесконечно малой.
Эти же рассуждения и понятия можно применить и в случае непрерывного аргумента.
Примеры
- I замечательный предел.
Этот предел означает, что при достаточно малых х sinx и х эквивалентны друг другу (напомним, что х – это величина угла, выраженная в радианах) (рис. 1). Это записывают так: sinxх
Смысл I-го замечательного предела состоит в том, что если центральный угол рад окружности единичного радиуса мал, то длина а полухорды, стягивающей этот угол, и длина дуги s, на которую угол опирается (рис.2), - величины эквивалентные. Действительно, величина угла в радианах – это и есть длина дуги окружности единичного радиуса, на которую угол опирается. А длина полухорды a=sin). Длину окружности L и вычисляют, как предел периметров вписанных n-угольников, когда число сторон n стремится к бесконечности. Если n велико, то n мало и выполняется sinn/2n/2 и an2Rn/2=Rn=s. Если Ln периметр многоугольника, то Ln=nan L.
Алгоритм предельного перехода применяется и для определения площади круга. Площадь круга S есть предел площадей n-угольников Sn. Sn складывается из площадей n треугольников равной площади s, вершиной которых является центр окружности, а основанием – сторона многоугольника (рис. 3). По формуле для вычисления площади треугольника получаем sn=1/2Ran.
Sn=nsn=n1/2Ran=1/2RLn1/2RL=1/2R2R=R2
Архимед
за 2тыс. лет до трудов Лейбница и Ньютона
об исчислении бесконечно малых,
определивших последующее развитие
методов математического анализа в
Европе, для определения значения числа
применил идею предельного перехода. Он
вычислил периметры вписанных в окружность
и описанных около нее правильных
многоугольников от 6-ти до 96-ти угольника
и определил очень узкие пределы для
числа :
.
2.
или
-
II замечательный предел. Этот предел мы уже рассматривали, когда делали оценки величины наращенного вклада, когда число периодов начисления процентов по вкладу велико.
Непрерывность функции. Точки разрыва функции
Рассмотрим функцию непрерывного аргумента y=f(x). Пусть при приближении значения аргумента к числу а значение функции приближается к числу А как угодно близко (и может быть даже принимает значение А) (рис. 4).
Тогда говорят, что в точке а существует предел функции f(x), равный А, и это записывается следующим образом:
или
Как а, так и А могут, вообще говоря, принимать значение, равное бесконечности ().
В случаях, когда функция ведет себя по-разному, в зависимости от того, справа или слева мы приближаемся к точке а, говорят о пределе справа и пределе слева и приняты следующие обозначения:
Примеры
(рис. 5а)
(рис. 5б)
(рис. 6). Заметим, что при стремлении к /2 слева, тангенс неограниченно возрастает, а при стремлении к /2 справа, тангенс неограниченно убывает. Таким образом,
Н
а
рисунках 7, 8 и 9 приведены графики функций,
имеющих разрыв в точке х0.
На рисунке 10 приведен график функции,
которая на отрезке [А,В] не имеет точек
разрыва. Такая функция называется
непрерывной
на отрезке
[А,В] (в каждой точке а
отрезка
функция имеет определенное значение b
и
).
Непрерывными являются функции y=x2, y=sinx, y=ax (на всей числовой прямой), y=lnx (при х>0) и т.д.