
- •Глава 1: Проценты 6
- •Глава 2: Арифметическая и геометрическая прогрессии 13
- •Глава 3: Геометрические построения в орнаментах и мозаиках 21
- •Глава 4: Пропорции 41
- •Глава 5: Немного о математике храмов Древней Руси (XI-xiIвв.) 57
- •Глава 7: Измерение фигур 76
- •Глава 8: Метод координат 87
- •Глава 9: Функции и графики 103
- •Глава 10: Конические сечения (коники). Кривые 2-го порядка 111
- •Глава 11: Непрерывность функции. Производная и кривизна 122
- •Глава 12: Интегральное исчисление 133
- •Глава 1 Проценты
- •Понятие процента
- •Абсолютная и относительная погрешность
- •Проценты вокруг нас
- •Применение процентов в банковской практике. Начисление процентов на вклад по простой и сложной схеме
- •Использование приближенных формул и таблиц, когда n велико
- •Сравнение сложной и простой схемы
- •Глава 2 Арифметическая и геометрическая прогрессии Метод полной индукции
- •Арифметические прогрессии
- •Геометрическая прогрессия
- •Бесконечные прогрессии
- •Примеры из финансовых расчетов
- •Глава 3 Геометрические построения в орнаментах и мозаиках Основные построения с помощью циркуля и линейки
- •Деление окружности на равные части с помощью циркуля и линейки
- •Построение логарифмической спирали
- •Построение узоров в круге на основе сеток
- •Движения на плоскости – перенос, поворот на угол , симметрии
- •Симметрия в орнаментах
- •Розетки
- •Бордюры
- •Решетки
- •Симметричные мозаики (паркеты)
- •Глава 4 Пропорции Понятие пропорции
- •Преобразование подобия. Гомотетия
- •Пропорция . Нормальный полиграфический лист
- •Метод «квадрата и его диагонали» в русской архитектуре. Восьмерики
- •Средние значения двух величин
- •Золотое сечение (деление отрезка в среднем и крайнем отношении)
- •Последовательность Фибоначчи и золотое сечение
- •Спираль Дюрера и «золотые» треугольники
- •"Золотая" пропорция и правильные многоугольники
- •«Золотая» прогрессия. «Золотые» модулеры
- •Производные «золота»
- •Глава 5 Немного о математике храмов Древней Руси (XI-xiIвв.)
- •Геометрические построения, применявшиеся древними мастерами
- •Некоторые стандарты планировки интерьера храма
- •Построение “золотого” плана циркулем и линейкой
- •Двухстолпный и бесстолпный храмы
- •План четырехстолпного храма
- •Глава 6 Размерение сооружений, имеющих "золотые" пропорции Модулер Корбюзье
- •Меры древней Руси
- •Глава 7 Измерение фигур
- •Измерение температуры
- •Тригонометрические функции
- •Решение треугольников
- •Площади плоских фигур
- •Многогранники
- •Правильные многогранники
- •Правильные пирамиды
- •Египетские пирамиды
- •Объемы фигур
- •Площади боковых поверхностей
- •Глава 8 Метод координат
- •Декартовы координаты
- •Векторы на плоскости
- •Полярная система координат
- •Связь между декартовыми координатами и полярными
- •Линии и их уравнения
- •Уравнение спирали Архимеда
- •Уравнение логарифмической спирали
- •Декартова система координат в трехмерном пространстве
- •Векторы в трехмерном пространстве
- •Сферические координаты
- •Сферические координаты в географии.
- •Орнаменты на сфере. Изогнутые крыши
- •Глава 9 Функции и графики Понятие функции
- •Четные и нечетные функции.
- •Периодические функции.
- •Монотонные функции.
- •Элементарные функции
- •Операции над графиками двух функций
- •Уравнение прямой на плоскости
- •Изменение уравнения линии при изменении системы координат
- •Глава 10 Конические сечения (коники). Кривые 2-го порядка Гипербола
- •Парабола
- •Эллипс как сжатая окружность. Каноническое уравнение эллипса
- •Построение овала с помощью циркуля и линейки. Характеристический прямоугольник. Фокусы эллипса
- •Эксцентриситет эллипса и параболы
- •Конические сечения
- •Кривые второго порядка
- •Проекции и конические сечения
- •Поверхности второго порядка в пространстве
- •Шары, эллипсоиды, конусы, цилиндры, параболоиды, гиперболоиды
- •Прямолинейные образующие
- •Глава 11 Непрерывность функции. Производная и кривизна Понятие предела
- •Непрерывность функции. Точки разрыва функции
- •Производная и ее геометрический смысл
- •Основные правила дифференцирования
- •Производные высших порядков
- •Роль производных в приближенных вычислениях
- •Производная и скорость изменения функции. Скачок производной
- •Знак производной и монотонность функции. Обращение производной в ноль
- •Выпуклость и вогнутость графика функции. Точки перегиба
- •Выпуклые, вогнутые и кровли с перегибом
- •Кривизна дуги
- •Глава 12 Интегральное исчисление Неопределенный интеграл
- •Основные методы интегрирования
- •Определенный интеграл. Задача о площади
- •Вычисление определенного интеграла
- •Основные свойства определенного интеграла.
- •Вычисление длин дуг.
- •Вычисление площади и длины дуги в полярных координатах
- •Вычисление длины окружности и площади круга и эллипса
- •Объем тела вращения
- •Площадь поверхности вращения
- •Ответы к задачам
- •Глава 1
- •Глава 2
- •Приложение
- •Изображение окружности и шара
- •Гирлянды (парабола)
- •Формулы
Линии и их уравнения
Итак, при наличии системы координат каждой точке плоскости соответствует пара действительных чисел и, наоборот, каждой паре чисел соответствует определенная точка плоскости. Можно установить, что линиям на плоскости соответствует некоторое уравнение с двумя переменными x и y в декартовой системе координат и переменными r и в полярной. Связь между уравнениями и линиями позволяет свести изучение геометрических свойств линий к исследованию аналитических свойств соответствующих им уравнений. Линии на плоскости соответствует некоторое уравнение с двумя переменными, которому удовлетворяют координаты любой точки, лежащей на линии, и не удовлетворяют координаты ни одной точки, не лежащей на ней. Такое уравнение называют уравнением данной линии. Входящие в него координаты x и y (или r и ) произвольной точки линии называются текущими координатами.
Уравнение линии на плоскости может быть аналитически задано в явном виде - y=f(x), =f() или неявном виде - F(x,y)=0, F(,)=0. Полярную систему координат удобно использовать, когда длина радиуса-вектора точек, лежащих на линии, связана аналитической зависимостью со значением угла поворота .
Примеры уравнений линий в декартовой и полярной системе координат
1.Уравнение прямой, отсекающей на оси Y отрезок величины b: y=kx+b, где k - значение tg угла наклона прямой к оси ОХ; параметр k называется угловым коэффициентом прямой. Уравнение линии задано в явном виде (рис. 8).
2.Уравнение
линии, являющейся геометрическим местом
точек, для которых расстояние до некоторой
точки О с координатами а
и b
есть величина постоянная (обозначим ее
через R).
Выпишем условие равенства константе R
расстояния от любой точки М(x,y)
до точки O(a,b):
.
Возведя обе части равенства в квадрат,
получаем каноническое уравнение
окружности:
(x-a)2+(y-b)2=R2
Если система координат выбрана так, что центр окружности совпадает с началом координат, то a=0, b=0 и уравнение окружности принимает вид:
x2+y2=R2
Уравнение линии в этих примерах задано в неявном виде.
3.Уравнение окружности в полярной системе координат.
Введем полярную систему координат, центр которой совпадает с центром окружности, а направление полярной оси, например, горизонтальное. Окружность определяется, как геометрическое место точек, для которых расстояние до некоторой точки О есть величина постоянная (эту величину мы обозначали через R). Следовательно, уравнение окружности в полярных координатах: r=R
Окружность дает простейший пример линии, уравнение которой от перехода к полярной системе координат упрощается.
На рисунке 9 приведена окружность и ее уравнение в разных системах координат. Одновременно мы показали на этом простом примере, что вид линии не зависит от того, в какой системе координат написано ее уравнение. От выбора системы координат зависит лишь вид уравнения.
Рассмотрим примеры еще 2 кривых, длина радиуса-вектора которых связана аналитической зависимостью со значением его угла поворота . Уравнения этих кривых удобно задавать именно в полярной системе координат.