
- •Глава 1: Проценты 6
- •Глава 2: Арифметическая и геометрическая прогрессии 13
- •Глава 3: Геометрические построения в орнаментах и мозаиках 21
- •Глава 4: Пропорции 41
- •Глава 5: Немного о математике храмов Древней Руси (XI-xiIвв.) 57
- •Глава 7: Измерение фигур 76
- •Глава 8: Метод координат 87
- •Глава 9: Функции и графики 103
- •Глава 10: Конические сечения (коники). Кривые 2-го порядка 111
- •Глава 11: Непрерывность функции. Производная и кривизна 122
- •Глава 12: Интегральное исчисление 133
- •Глава 1 Проценты
- •Понятие процента
- •Абсолютная и относительная погрешность
- •Проценты вокруг нас
- •Применение процентов в банковской практике. Начисление процентов на вклад по простой и сложной схеме
- •Использование приближенных формул и таблиц, когда n велико
- •Сравнение сложной и простой схемы
- •Глава 2 Арифметическая и геометрическая прогрессии Метод полной индукции
- •Арифметические прогрессии
- •Геометрическая прогрессия
- •Бесконечные прогрессии
- •Примеры из финансовых расчетов
- •Глава 3 Геометрические построения в орнаментах и мозаиках Основные построения с помощью циркуля и линейки
- •Деление окружности на равные части с помощью циркуля и линейки
- •Построение логарифмической спирали
- •Построение узоров в круге на основе сеток
- •Движения на плоскости – перенос, поворот на угол , симметрии
- •Симметрия в орнаментах
- •Розетки
- •Бордюры
- •Решетки
- •Симметричные мозаики (паркеты)
- •Глава 4 Пропорции Понятие пропорции
- •Преобразование подобия. Гомотетия
- •Пропорция . Нормальный полиграфический лист
- •Метод «квадрата и его диагонали» в русской архитектуре. Восьмерики
- •Средние значения двух величин
- •Золотое сечение (деление отрезка в среднем и крайнем отношении)
- •Последовательность Фибоначчи и золотое сечение
- •Спираль Дюрера и «золотые» треугольники
- •"Золотая" пропорция и правильные многоугольники
- •«Золотая» прогрессия. «Золотые» модулеры
- •Производные «золота»
- •Глава 5 Немного о математике храмов Древней Руси (XI-xiIвв.)
- •Геометрические построения, применявшиеся древними мастерами
- •Некоторые стандарты планировки интерьера храма
- •Построение “золотого” плана циркулем и линейкой
- •Двухстолпный и бесстолпный храмы
- •План четырехстолпного храма
- •Глава 6 Размерение сооружений, имеющих "золотые" пропорции Модулер Корбюзье
- •Меры древней Руси
- •Глава 7 Измерение фигур
- •Измерение температуры
- •Тригонометрические функции
- •Решение треугольников
- •Площади плоских фигур
- •Многогранники
- •Правильные многогранники
- •Правильные пирамиды
- •Египетские пирамиды
- •Объемы фигур
- •Площади боковых поверхностей
- •Глава 8 Метод координат
- •Декартовы координаты
- •Векторы на плоскости
- •Полярная система координат
- •Связь между декартовыми координатами и полярными
- •Линии и их уравнения
- •Уравнение спирали Архимеда
- •Уравнение логарифмической спирали
- •Декартова система координат в трехмерном пространстве
- •Векторы в трехмерном пространстве
- •Сферические координаты
- •Сферические координаты в географии.
- •Орнаменты на сфере. Изогнутые крыши
- •Глава 9 Функции и графики Понятие функции
- •Четные и нечетные функции.
- •Периодические функции.
- •Монотонные функции.
- •Элементарные функции
- •Операции над графиками двух функций
- •Уравнение прямой на плоскости
- •Изменение уравнения линии при изменении системы координат
- •Глава 10 Конические сечения (коники). Кривые 2-го порядка Гипербола
- •Парабола
- •Эллипс как сжатая окружность. Каноническое уравнение эллипса
- •Построение овала с помощью циркуля и линейки. Характеристический прямоугольник. Фокусы эллипса
- •Эксцентриситет эллипса и параболы
- •Конические сечения
- •Кривые второго порядка
- •Проекции и конические сечения
- •Поверхности второго порядка в пространстве
- •Шары, эллипсоиды, конусы, цилиндры, параболоиды, гиперболоиды
- •Прямолинейные образующие
- •Глава 11 Непрерывность функции. Производная и кривизна Понятие предела
- •Непрерывность функции. Точки разрыва функции
- •Производная и ее геометрический смысл
- •Основные правила дифференцирования
- •Производные высших порядков
- •Роль производных в приближенных вычислениях
- •Производная и скорость изменения функции. Скачок производной
- •Знак производной и монотонность функции. Обращение производной в ноль
- •Выпуклость и вогнутость графика функции. Точки перегиба
- •Выпуклые, вогнутые и кровли с перегибом
- •Кривизна дуги
- •Глава 12 Интегральное исчисление Неопределенный интеграл
- •Основные методы интегрирования
- •Определенный интеграл. Задача о площади
- •Вычисление определенного интеграла
- •Основные свойства определенного интеграла.
- •Вычисление длин дуг.
- •Вычисление площади и длины дуги в полярных координатах
- •Вычисление длины окружности и площади круга и эллипса
- •Объем тела вращения
- •Площадь поверхности вращения
- •Ответы к задачам
- •Глава 1
- •Глава 2
- •Приложение
- •Изображение окружности и шара
- •Гирлянды (парабола)
- •Формулы
Глава 4 Пропорции Понятие пропорции
Пропорцией
называется равенство двух отношений:
.
Это равенство можно переписать в виде:
ad=b,
что позволяет найти любой член пропорции,
если известны три других ее члена.
Например, найти неизвестный член
пропорции х,
если
.
Решение такое.
190х=20114
х=20114:190=12
Параллельные прямые, пересекающие угол, отсекают на сторонах угла пропорциональные отрезки (рис. 1а). Это позволяет построить геометрическое решение задачи о нахождении неизвестного члена пропорции (рис. 1б).
Применение пропорций помогает решать задачи, в которых участвуют подобные треугольники (рис. 1в).
Например, во сколько раз увеличится основание треугольника, если сделать его подобное преобразование, увеличив высоту в раз? Согласно теореме о пересечении угла параллельными прямыми, оно увеличится тоже в раз. Следовательно, площадь треугольника при увеличении высоты в раз увеличится в 2 раз. Например, при увеличении высоты вдвое площадь треугольника увеличивается в 4 раза. На рис. 1 больший треугольник состоит из 4-х одинаковых треугольников.
Преобразование подобия. Гомотетия
Преобразование фигуры F в фигуру F1 называется преобразованием подобия, если при этом преобразовании расстояния между точками фигуры изменяются (увеличиваются или уменьшаются) в одно и то же число раз. Это значит, что если произвольные точки M и N фигуры F при этом преобразовании переходят в точки M1 и N1 фигуры F1, то M1N1=kMN; число k называется коэффициентом подобия. При k=1 преобразование подобия, очевидно, является движением. Преобразование подобия переводит прямые в прямые, полупрямые в полупрямые и отрезки в отрезки и сохраняет углы между полупрямыми. Две фигуры называются подобными, если они переходят друг в друга преобразованием подобия. У подобных фигур соответствующие углы равны, а соответствующие отрезки пропорциональны. Таким образом, подобные фигуры имеют одинаковую форму и пропорциональные размеры. Проще всего построить подобное изображение фигуры с помощью так называемой гомотетии.
Гомотетией с центром О и коэффициентом k>0 называется такое преобразование, при котором произвольная точка М любого луча, исходящего из точки О, переходит в точку М1 того же луча, причем ОМ1=kОМ. Пусть F – данная фигура, О – некоторая точка, k – заданное положительное число. Возьмем произвольную точку М фигуры F. Проведем луч ОМ и отложим на нем отрезок ОМ1, равный kОМ. Получим точку М1 новой фигуры F1. Преобразование фигуры F в фигуру F1 есть гомотетия с центром О и коэффициентом k (рис. 2). Фигуры F и F1 называются гомотетичными.
Если фигура F1 получена из фигуры F с помощью гомотетии с коэффициентом k, то все ее линейные размеры в k раз больше при k>1, или в k раз меньше при k<1, и все углы у обеих фигур одинаковые. Площадь S1 фигуры F1 будет больше при k>1 (или меньше при k<1) площади S фигуры F в k2 раз. Гомотетию можно использовать для изменения масштаба в k раз. Центр гомотетии может лежать, как внутри фигуры, так и вне нее (рис. 2).
Гомотетия есть частный случай преобразования подобия. Если мы фигуру F преобразуем в фигуру F1 с помощью гомотетии с некоторым центром О и коэффициентом k, а затем "передвинем" (перенесем, повернем, отразим), то фигуры F и F1 будут подобны, но не гомотетичны.