
- •30. Движение заряж. Частицы в электрическом и магнитных полях
- •31. Закон Био-Савара-Лапласа для расчета магнитных полей токов
- •32, Явление электромагнитной индукции. Правило Ленца
- •33. Взаимная индукция соленоидов. Работа трансформатора
- •34. Причины существования ферромагнетиков, парамагнетиков, диамагнетиков
- •35. Формирование электромагнитных колебаний в колебательном контуре
- •38. Законы отражения и преломления света
- •39. Понятие геометрической оптики. Тонкие линзы, их фокусное расстояние, оптическая сила.
- •40. Условия полного отражения света. Световоды
- •41. Электромагнитная природа света. Монохроматизм и когерентность
- •42. Оптическая разность хода. Интерференция световых волн
- •43. Интерференция света в тонких пленках
- •Нетрудно показать, что
- •44. Дифракция волн и принцип Гюйгенса-Френеля
- •45. Дифракция света на одной щели, дифракционная решетка
- •46. Понятие формирования голографического изображения
- •47. Поляризация света. Способы его поляризации
- •48. Двойное лучепреломление
- •49. Распространение света в веществе. Дисперсия света
- •50. Поглощение света, квантовомеханические причины
- •53. Постулаты Бора. Строение атома водорода
- •54. Изучение возбужденных атомов
- •55 Дифракция электронов и корпускулярно-волновой дуализм
- •56. Виды ядерных реакций. Период полураспада радиоактивных элементов
56. Виды ядерных реакций. Период полураспада радиоактивных элементов
Ядерные взаимодействия с частицами носят весьма разнообразный характер, их виды и вероятности той или иной реакции зависят от вида бомбардирующих частиц, ядер-мишеней, энергий взаимодействующих частиц и ядер и многих других факторов.
Деление ядра
Деле́ние ядра́ — процесс расщепления атомного ядра на два (реже три) ядра с близкими массами, называемых осколками деления. В результате деления могут возникать и другие продукты реакции: лёгкие ядра (в основном альфа-частицы), нейтроны и гамма-кванты. Деление бывает спонтанным (самопроизвольным) и вынужденным (в результате взаимодействия с другими частицами, прежде всего, с нейтронами). Деление тяжёлых ядер — экзотермический процесс, в результате которого высвобождается большое количество энергии в виде кинетической энергии продуктов реакции, а также излучения.
Деление ядер служит источником энергии в ядерных реакторах и ядерном оружии.
Термоядерный синтез
При нормальной температуре слияние ядер невозможно, так как положительно заряженные ядра испытывают огромные силы кулоновского отталкивания. Для синтеза легких ядер необходимо сблизить их на расстояние порядка 10−15 м, на котором действие ядерных сил притяжения будет превышать кулоновские силы отталкивания. Для того чтобы произошло слияние ядер, необходимо увеличить их подвижность, то есть увеличить их кинетическую энергию. Это достигается повышением температуры. За счет полученной тепловой энергии увеличивается подвижность ядер, и они могут подойти друг к другу на такие близкие расстояния, что под действием ядерных сил сцепления сольются в новое более сложное ядро. В результате слияния легких ядер освобождается большая энергия, так как образовавшееся новое ядро имеет большую удельную энергию связи, чем исходные ядра. Термоядерная реакция — это экзоэнергетическая реакция слияния легких ядер при очень высокой температуре (107 К).
Прежде всего, среди них следует отметить реакцию между двумя изотопами (дейтерий и тритий) весьма распространенного на Земле водорода, в результате которой образуется гелий и выделяется нейтрон. Реакция может быть записана в виде
+ энергия (17,6 МэВ).
Выделенная энергия (возникающая из-за того, что гелий-4 имеет очень сильные ядерные связи) переходит в кинетическую энергию, большую часть из которой, 14,1 МэВ, уносит с собой нейтрон как более лёгкая частица. Образовавшееся ядро прочно связано, поэтому реакция так сильно экзоэнергетична. Эта реакция характеризуется наинизшим кулоновским барьером и большим выходом, поэтому она представляет особый интерес для термоядерного синтеза.
Термоядерная реакция используется в термоядерном оружии и находится на стадии исследований для возможного применения в энергетике, в случае решения проблемы управления термоядерным синтезом.
Фотоядерная реакция
При поглощении гамма-кванта ядро получает избыток энергии без изменения своего нуклонного состава, а ядро с избытком энергии является составным ядром. Как и другие ядерные реакции, поглощение ядром гамма-кванта возможно только при выполнении необходимых энергетических и спиновых соотношений. Если переданная ядру энергия превосходит энергию связи нуклона в ядре, то распад образовавшегося составного ядра происходит чаще всего с испусканием нуклонов, в основном нейтронов. Такой распад ведёт к ядерным реакциям и , которые и называются фотоядерными, а явление испускания нуклонов в этих реакциях — ядерным фотоэффектом.
где c характеризует поглощение. В видимой и ультрафиолетовой областях спектра основное значение имеют колебания электронов, а в инфракрасной - колебания ионов.
Согласно классическим представлениям, под действием электрического поля световой волны электроны атомов или молекул совершают вынужденные колебания с частотой, равной частоте приходящей волны. При приближении частоты световой волны к частоте собственных колебаний электронов возникает явление резонанса, обусловливающее зависимость e от частоты, а также поглощение света. Эта теория хорошо объясняет связь Дисперсия света с полосами поглощения. Для того чтобы получить количественное совпадение с опытом, в классической теории приходилось вводить для каждой линии поглощения некоторые эмпирические константы («силы осцилляторов»). Согласно электронной теории, справедливы приближённые формулы:
где N - число частиц в единице объёма, е и m - заряд и масса электрона, g - коэффициент затухания. На рис. 3 приведены графики зависимости n и c от n/n0.
Квантовая теория подтвердила качественные результаты классической теории и, кроме того, дала возможность связать эти константы с другими характеристиками электронных оболочек атомов (их волновыми функциями в разных энергетических состояниях). Квантовая теория объяснила также особенности Дисперсия света, наблюдающиеся в тех случаях, когда имеется значительное число атомов в возбуждённых состояниях (так называемая отрицательная Дисперсия света).
Дисперсия света в прозрачных материалах, применяемых в оптических приборах, имеет большое значение при расчёте спектральных приборов в целях получения хороших спектров, при расчёте ахроматических линз или призм, для уничтожения Дисперсия света, вызывающей хроматическую аберрацию, и др.
Вращательная дисперсия - изменение угла вращения плоскости поляризации j в зависимости от длины волны l. В прозрачных веществах угол j обычно возрастает с уменьшением l, причём для некоторых сред приближённо выполняется закон Био: j = К/l2 (К - постоянная для данного вещества). Вращательная Дисперсия света такого типа называется нормальной. В области поглощения света ход вращательной Дисперсия света значительно сложнее, причём угол j может достигать огромных величин (аномальная вращательная дисперсия).
Период полураспада радиоактивных элементов изменяет расстояние до Солнца
Группа американских физиков опубликовала препринт статьи, в которой при помощи статистических методов установила взаимосвязь, между значением периода полураспада некоторых изотопов радия и хлора и расстоянием от Земли до Солнца.
Радиоактивным материал делает способность ядер его атомов распадаться, испуская при этом различные элементарные частицы.
Время, за которое распадается половина атомов, называется периодом полураспада.
Традиционно считается, что это число является постоянным, то есть внешние факторы на это значение не влияют (за исключением сильных магнитных полей для так называемого бета-распада).
В своей работе американские физики использовали результаты двух экспериментов. Первый проходил в 80-х годах прошлого века.
Тогда группа ученых из Брукхавенской национальной лаборатории (Brookhaven National Laboratory) проводила вычисление периода полураспада для радиоактивного изотопа кремния 32Si . В то время полагали, что эта величина лежит в пределах от 60 до 700 лет.
Опыт заключался в следующем. Ученые взяли материал с очень большим периодом полураспада, и использовали его в качестве основы для сравнения. В их случае это был изотоп хлора 36Cl с периодом полураспада около 301 тысячи лет.
Это было необходимо, чтобы уменьшить влияние случайных эффектов на конечный результат. Затем в течение четырех лет ученые измеряли массу образцов обоих материалов.
Проведя математическую обработку данных измерений, ученые получили неожиданный результат: период полураспада 32Si оказался зависим от времени.
Другой эксперимент, использованный в новой работе, проводился немецкой лабораторией Physikalisch-Technische Bundesanstalt. В нем ученые аналогичным образом вычисляли период полураспада изотопа радия 226Ra. Там эксперимент длился 15 лет.
Используя аппарат математической статистики, ученым удалось оценить зависимость (корреляцию) между ежегодными колебаниями расстояния от Земли до Солнца и изменениями значения периода полураспада для указанных изотопов.
Вероятность того, что эти две величины не связаны друг с другом, оказалась порядка 10-18.
Никаких общих теорий, объясняющих подобную связь, в настоящее время не существует. Согласно одной из гипотез, на период полураспада оказывают влияние потоки нейтрино, испускаемые Солнцем.
Проверкой подобной гипотезы могло бы служить измерение периода полураспада вблизи ядерного реактора, который, испуская нейтрино, играл бы роль Солнца.
57. Импульс фотона. Эффект комптона
Фотон - материальная, электрически нейтральная частица, квант электромагнитного поля (переносчик электромагнитного взаимодействия).
Основные свойства фотона
1. Является частицей электромагнитного поля.
2. Движется со скоростью света.
3. Существует только в движении.
4. Остановить фотон нельзя: он либо движется со скоростью, равной скорости света, либо не существует; следовательно, масса покоя фотона равна нулю.
Энергия фотона:.
Согласно теории относительности энергия всегда может быть вычислена как , Отсюда - масса фотона.
Импульс фотона . Импульс фотона направлен по световому пучку.
Наличие импульса подтверждается экспериментально: существованием светового давления.
Давление света
В 1873 г. Дж. Максвелл, исходя из представлений об электромагнитной природе света, пришел к выводу: свет должен оказывать давление на препятствие (благодаря действию силы Лоренца; на рисунке v - направление скорости электронов под действием электрической составляющей электромагнитной волны).
Квантовая теория света объясняет световое давление как результат передачи фотонами своего импульса атомам или молекулам вещества. Пусть на поверхность абсолютно черного тела площадью S перпендикулярно к ней ежесекундно падает N фотонов: . Каждый фотон обладает импульсом . Полный импульс, получаемый поверхностью тела, равен . Световое давление:
При падении света на зеркальную поверхность удар фотона считают абсолютно упругим, поэтому изменение импульса и давление в 2 раза больше, чем при падении на черную поверхность (удар неупругий).
Это давление оказалось ~4.10-6 Па. Предсказание Дж. Максвеллом существования светового давления было экспериментально подтверждено П. Н. Лебедевым, который в 1900 г. измерил давление света на твердые тела, используя чувствительные крутильные весы. Теория и эксперимент совпали.
Опыты П. Н. Лебедева — экспериментальное доказательство факта: фотоны обладают импульсом
Эффект Комптона (1923)
А. Комптон на опыте подтвердил квантовую теорию света. С точки зрения волновой теории световые волны должны рассеиваться на малых частицах без какого-либо изменения частоты излучения, что опытом не подтверждается.
При исследовании законов рассеяния рентгеновских лучей А. Комптон установил, что при прохождении рентгеновских лучей через вещество происходит увеличение длины волны рассеянного излучения по сравнению с длиной волны падающего излучения. Чем больше угол рассеяния, тем больше потери энергии, а следовательно, и уменьшение частоты (увеличение длины волны). Если считать, что пучок рентгеновских лучей состоит из фотонов, которые летят со скоростью света, то результаты опытов А. Комптона можно объяснить следующим образом.
Законы сохранения энергии и импульса для системы фотон - электрон:
где m0c2 - энергия неподвижного электрона; hv - энергия фотона до столкновения; hv' - энергия фотона после столкновения, p и p' - импульсы фотона до и после столкновения; mv - импульс электрона после столкновения с фотоном.
Решение системы уравнений для энергии и импульса с учетом того, что дает формулу для измерения длины волны при рассеянии фотона на (неподвижных) электронах:
где - так называемая комптоновская длина волны.
Корпускулярно-волновой дуализм
Конец XIX в.: фотоэффект и эффект Комптона подтвердили теорию Ньютона, а явления дифракции, интерференции света подтвердили теорию Гюйгенса.
Таким образом, многие физики в начале XX в. пришли к выводу, что свет обладает двумя свойствами:
1. При распространении он проявляет волновые свойства.
2. При взаимодействии с веществом проявляет корпускулярные свойства. Его свойства не сводятся ни к волнам, ни к частицам.
Чем больше v, тем ярче выражены квантовые свойства света и менее - волновые.
Итак, всякому излучению присущи одновременно волновые и квантовые свойства. Поэтому то, как проявляет себя фотон - как волна или как частица,— зависит от характера проводимого над ним исследования.
58. Волновая функция. Гипотеза де Бройля
Описание состояния микрообъекта с помощью Волновая функция имеет статистический, т. е. вероятностный характер: квадрат абсолютного значения (модуля) Волновая функция указывает значение вероятностей тех величин, от которых зависит Волновая функция Например, если задана зависимость Волновая функция частицы от координат х, у, z и времени t, то квадрат модуля этой Волновая функция определяет вероятность обнаружить частицу в момент t в точке с координатами х, у, z. Поскольку вероятность состояния определяется квадратом Волновая функция, её называют также амплитудой вероятности.
Волновая функция одновременно отражает и наличие волновых свойств у микрообъектов. Так, для свободной частицы с заданным импульсом р и энергией E, которой сопоставляется волна де Бройля с частотой v = E/h и длиной волны λ = h/p (где h — постоянная Планка), Волновая функция должна быть периодична в пространстве и времени с соответствующей величиной λ и периодом Т = 1/v.
Для Волновая функция справедлив суперпозиций принцип: если система может находиться в различных состояниях с Волновая функция ψ1, ψ2.., то возможно и состояние с Волновая функция, равной сумме (и вообще любой линейной комбинации) этих Волновая функция Сложение Волновая функция (амплитуд вероятностей), а не вероятностей (квадратов Волновая функция) принципиально отличает квантовую теорию от любой классической статистической теории (в которой справедлива теорема сложения вероятностей).