Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
Физика 1.docx
Скачиваний:
0
Добавлен:
01.04.2025
Размер:
33.69 Кб
Скачать

28. Дырочно-электронный переход в полупроводниках.

Электронно-дырочный переход — область пространства на стыке двух полупроводников p- и n-типа, в которой происходит переход от одного типа проводимости к другому.

Электронно-дырочный механизм проводимости проявляется только у чистых (т. е. без примесей) полупроводников. Он называется собственной электрической проводимостью полупроводников.

В полупроводнике p-типа концентрация дырок намного превышает концентрацию электронов. В полупроводнике n-типа концентрация электронов намного превышает концентрацию дырок. Если между двумя такими полупроводниками установить контакт, то возникнет диффузионный ток — носители заряда, хаотично двигаясь, перетекают из той области, где их больше, в ту область, где их меньше. При такой диффузии электроны и дырки переносят с собой заряд. Как следствие, область на границе станет заряженной, и область в полупроводнике p-типа, которая примыкает к границе раздела, получит дополнительный отрицательный заряд, приносимый электронами, а пограничная область в полупроводнике n-типа получит положительный заряд, приносимый дырками. Таким образом, граница раздела будет окружена двумя областями пространственного заряда противоположного знака. Электрическое поле, возникающее вследствие образования областей пространственного заряда, вызывает дрейфовый ток в направлении, противоположном диффузионному току. В конце концов, между диффузионным и дрейфовым токами устанавливается динамическое равновесие и перетекание зарядов прекращается.

29. Понятие магнитного поля. Сила Лоренца и сила Ампера.

Магнитное поле – силовое поле, основным свойством которого, является действие на проводники с током или движущиеся заряды в этом поле.

Сила Лоренца. Так как электрический ток представляет собой упорядоченное движение зарядов, то действие магнитного поля на проводник с током есть результат его действия на отдельные движущиеся заряды.

Сила, действующая на проводник с током в магнитном поле, называется силой Ампера.

Сила действия однородного магнитного поля на проводник с током прямо пропорциональна силе тока, длине проводника, модулю вектора индукции магнитного поля, синусу угла между вектором индукции магнитного поля и проводником:

F=B.I.ℓ. sin α — закон Ампера.

30. Движение заряженной частицы в электрическом и магнитном полях.

 Электрические и магнитные поля действуют на движущиеся заряженные частицы с известной силой. Поэтому эти поля могут использоваться для управления движением заряженных частиц. Потоки движущихся заряженных частиц широко используются в различных приборах.

 Описание движения заряженной частицы проводится на основании второго закона Ньютона, уравнение которого имеет вид

ma=qE+qv*B,(1)

где qE − сила, действующая на частицу с электрическим зарядом q со стороны электрического поля; qv*B − сила Лоренца, действующая на частицу со стороны магнитного поля. В общем случае напряженность электрического поля E и индукция магнитного поля B могут зависеть от координат (в неоднородных полях) и времени (в нестационарных полях). Для однозначного решения уравнения (1) его необходимо дополнить начальными условиями: положением частицы ro и скоростью vo в некоторый момент времени to.

 При описании распространения потоков частиц в некоторых случаях необходимо также учитывать взаимодействия частиц между собой, или принимать во внимание зависимость характеристик полей от положения и скоростей других частиц. Наконец, при записи уравнения (1) принято, что частицы движутся в вакууме, где отсутствуют силы сопротивления среды. Движение частиц в средах, обладающих сопротивлением, описываются в рамках уравнений для электрического тока. При движении частиц в электромагнитном поле, как правило, пренебрегают действием силы тяжести, которая обычно значительно меньше электромагнитных сил.

 Записанное уравнение движения справедливо для частиц, движущихся со скоростями, значительно меньшими скорости света. В противном случае необходимо использовать релятивистские уравнения движения теории относительности.