- •Классификация внутренних перенапряжений и их основные характеристики
- •1.1.Общая характеристика внутренних перенапряжений
- •1.2. Влияние режима нейтрали сети на уровень перенапряжений
- •А) зависимость напряжения на дгр б) векторная от степени настройки реактора диаграмма
- •Резистивное заземление нейтрали
- •Особенности внутренних перенапряжений в сетях с эффективно заземленной нейтралью
- •Однофазные кз в сетях с заземленной нейтралью.
- •Модуль 2
- •2.1. Перенапряжения в длинных линиях за счет емкостного эффекта
- •2.2.Перенапряжения при несимметричных режимах. Способы ограничения перенапряжений – шунтирующие реакторы
- •Вопросы для самопроверки:
- •Чем опасен для изоляции электрооборудования случай отказа одной из фаз выключателя при включении или отключении линии?
- •2.3.Феррорезонансные перенапряжения. Причины возникновения феррорезонанса
- •2.4. Феррорезонансные перенапряжения в сетях с глухозаземленной нейтралью
- •2.5. Феррорезонансные перенапряжения в сетях с изолированной нейтралью
- •Перенапряжения при самовозбуждении генераторов, работающих на емкостную нагрузку
- •Модуль 3
- •3. Перенапряжения в переходных режимах при коммутациях
- •3.1. Основные виды электрических схем
- •3.2. Перенапряжения при включении ненагруженной линии.
- •3.3.Перенапряжения при отключении короткого замыкания (кз) в цикле апв
- •3.4. Перенапряжения при отключении небольших индуктивных токов трансформаторов (реакторов)
- •3.5. Перенапряжения при разрыве электропередачи вследствие асинхронного хода
- •Модуль 4
- •4. Выбор и координация изоляции при воздействии внутренних перенапряжений. Способы ограничения перенапряжений
- •4.1. Система защиты от перенапряжений:
- •4.2.Ограничители перенапряжений Характеристики опн
- •Параметры варисторов опн
- •4.3. Выбор ограничителей перенапряжений (опн) Условия надежной защиты с помощью опн
- •Замена вентильных разрядников на опн
- •Способы ограничения перенапряжений в сетях 6-35 кВ
- •Резистивное заземление нейтрали
- •4.5. Дуговые перенапряжения в сетях с изолированной нейтралью
- •Модуль 5 Волновые процессы в обмотках трансформаторов и автотрансформаторов
- •5.1. Волны, набегающие на подстанции
- •5.2. Схема замещения обмотки трансформатора
- •5.3. Волновые процессы в обмотках трансформаторов
- •5.4. Волновые процессы в обмотках автотрансформаторов
- •5.7. Распределение напряжения на обмотках автотрансформатора:
- •5.8. Защита обмотки низкого напряжения
- •5.5. Волновые процессы в обмотках вращающихся электрических машин
- •Литература
4.3. Выбор ограничителей перенапряжений (опн) Условия надежной защиты с помощью опн
На замену вентильных разрядников (РВ) пришли ограничители перенапряжений (ОПН) – защитные аппараты без искровых промежутков с высоконелинейными варисторами из металлооксидной керамики, постоянно подключенными между фазным проводом и землей. В отличие от РВ ОПН могут ограничивать и грозовые и коммутационные перенапряжения в электроустановках любых классов напряжений. Отметим также, что на воздушных линиях электропередачи (ВЛ) происходит замена трубчатых разрядников (РТ) на ОПН. ОПН устанавливаются вместо РТ на опорах ВЛ в местах с ослабленной изоляцией, в начале и конце защитного подхода перед подстанцией (ПС), на опорах вокруг пересечений ВЛ, на длинных переходах ВЛ и т.д.
Отсюда возникает комплексная задача, как выбрать ОПН, чтобы он имел достаточную энергоемкость и надежно работал при длительных напряжениях и при временных повышениях напряжения, а также обеспечивал требуемое ограничение грозовых и коммутационных перенапряжений.
Для того, чтобы ограничитель отвечал потребностям электрической сети, надежно защищал оборудование и не разрушался в процессе эксплуатации, необходимо выполнение следующих условий.
1.
Наибольшее допустимое напряжение ОПН
должно быть больше наибольшего рабочего
напряжения сети
или оборудования.
> .
В сетях с эффективно заземленной нейтралью за принимается максимальное фазное рабочее напряжение сети.
В сетях с изолированной нейтралью или с компенсацией емкостных токов за принимается междуфазное (линейное) напряжение сети.
2.
Уровень квазистационарных перенапряжений
должен быть меньше максимального
значения напряжения промышленной
частоты, выдерживаемого ОПН в течение
времени t.
Т· > ,
где Т = 1,3-1,45 в зависимости от длительности квазистационарных перенапряжений, определяемой временем работы релейной защиты.
3. Поглощаемая ограничителем энергия не должна превосходить энергоемкость ОПН
·
>
.
В нормальных эксплуатационных условиях, когда воздействующее напряжение не превосходит ограничителя, через ОПН протекает в основном емкостный ток. При этом выделяющаяся энергия полностью рассеивается в окружающую среду, и ограничитель работает в стабильном тепловом равновесии. Коммутационные перенапряжения, возникающие в сети, вызывают дополнительное выделение энергии. Условия сохранения теплового баланса требуют, чтобы величина этой энергии не превышала · .
Наиболее опасными, с точки зрения рассеиваемой в ОПН энергии, являются коммутации длинных кабельных линий и конденсаторных батарей. Электрическая энергия, запасенная в емкости, при перенапряжениях рассеивается на активном сопротивлении ОПН. Исходя из баланса энергий, можно оценить выделяемую в ОПН энергию по следующему выражению:
,
где С – емкость кабеля или конденсаторной батареи;
К
-
кратность перенапряжений;
-
наибольшее рабочее напряжение сети
или оборудования;
- наибольшее допустимое напряжение ОПН.
4. Ограничитель должен обеспечить необходимый защитный координационный интервал по грозовым воздействиям
=
(
)/
>
(0,2-0,25).
-
значение грозового испытательного
импульса;
-
остающееся напряжение на ОПН при
номинальном токе;
0,2 – 0,25 – координационный интервал.
Наличие расстояния между ОПН и оборудованием вызывает повышение напряжения на оборудовании по сравнению с остающимся напряжением на ОПН. В связи с этим уровень ограничения должен быть на 20-25% ниже испытательного напряжения полного или срезанного грозового импульса (ГОСТ1516.2-98).
5. Ограничитель должен обеспечить защитный координационный интервал по внутренним перенапряжениям
=
(
)/
>
(0,15-0,25),
где - допустимый уровень внутренних перенапряжений;
- остающееся напряжение на ОПН при коммутационном импульсе.
=
К
·
К
·1,414
,
- нормированное одноминутное испытательное напряжение внуренней изоляции трансформатора;
К = 1,3 – коэффициент импульса;
К = 0,9 – коэффициент кумулятивности.
6. Ток короткого замыкания сети должен быть меньше тока взрывобезопасности ОПН.
