Добавил:
Upload Опубликованный материал нарушает ваши авторские права? Сообщите нам.
Вуз: Предмет: Файл:
ядерна фіз.лаб.doc
Скачиваний:
0
Добавлен:
01.04.2025
Размер:
2.48 Mб
Скачать

2. Будова і робота лічильника гейгера-мюллера.

Лічильник складається із катоду (к-корпус) і аноду, яким є металева дротина, протягнена уздовж вісі (рис. 1.). Корпус лічильника заземлюється. На катод і анод подається висока напруга. Напруженість електричного полючи між електродами в циліндричному лічильнику нерівномірна і визначається виразом

(1)

де: D- діаметр циліндра катода;

d - діаметр анодної нитки;

r - відстань від анода до крапки спостереження;

V-напруга на електродах.

Чим менше діаметр нитки d, тобто чим тонше нитка, тим більше напруженість поля Е поблизу анода. Діаметр дроту анода лежить у межах від 0,05мм до 0,3мм, матеріалом є вольфрам чи сталь. Поверхню дроту полірують, тому що незначні шорсткості на ній сильно спотворюють електричне поле і можуть викликати помилкові імпульси. Лічильники заповнюються газом під тиском 104 ¸ 5× 104 Па. Як правило використовуються легкі інертні гази – неон, аргон. До газу додаються важкі молекули (спирти, метани), концентрація яких досягає 10%. Ці домішки створюють у лічильнику умови для самогасіння розряду.

Рис .3. Електричне поле в лічильнику в момент іонізації (Е1< Е2)

1. анод;

2. іони, що утворилися;

3. катод.

У деяких лічильниках замість важких молекул органічних сполук використовуються атоми галогенів (хлор, бром). Лічильники з галогенною домішкою газу працюють при напрузі 360-450В і мають довгий термін служби.

  1. Часова характеристика лічильника.

Важливою характеристикою газорозрядних лічильників є МЕРТВИЙ ЧАС – це інтервал часу між початком імпульсу розряду і моментом, коли можливе виникнення наступного імпульсу розряду. Фізична причина існування мертвого часу полягає в тому, що на тлі потужного розряду, викликаного початковою частинкою, поява того чи іншого числа пара іонів зовні не позначається на характері процесів у лічильнику.

Лавинна іонізація виникає поблизу дроту, де Е велике. Електрони, володіючи великою рухливістю, за час t=10-5з досягають анода. Іони, через велику їхню масу, рухаються до катода повільніше і утворять просторовий позитивний заряд, що оточує анод (рис.3.). Це на якийсь час зменшує напруженість електричного поля Е поблизу анода настільки, що ударна іонізація стає неможливою. Поступово позитивні іони ідуть від анода і напруженість електричного поля поблизу його зростає й у якийсь момент часу знову стає можлива іонізація і виникнення лавинного розряду. Зміна напруженості електричного поля Е у анода з моменту виникнення розряду показане на рис.4. (суцільна лінія 1). Пунктирна лінія 2 відповідає зміні напруженості електричного поля Е у анода при розвитку нового розряду. Лінія 3 відповідає граничному значенню Е.

Звичайно мертвий час tМ=10-5с. Однак час, необхідне для повного відновлення працездатності лічильника tВ значно більше мертвого часу. Воно визначається швидкістю руху іонів і дорівнює тому часу, що затратять іони на проходження шляху від анода до катода. Якщо установка, що реєструє імпульси в лічильнику, досить чутлива, то відновлення працездатності лічильника визначається мертвим часом tМ..

Рис. 4

Роботу радіометричної установки (лічильник і реєструючий пристрій) характеризують роздільною здатністю або роздільним часом tроз.

Роздільний час - це той мінімальний проміжок часу, яким повинні бути розділені прольоти ядерних часток для того, щоб можна було зареєструвати їх окремо. У загальному випадку цей час визначається мертвим часом tМ, часом відновлення tв, і чутливістю перерахункової установки. Тому що чутливість перерахункових пристроїв звичайно висока, те ядерні частки, що потрапили в лічильник під час його відновлення, будуть зареєстровані, що тому дозволяє час визначається МЕРТВИМ ЧАСОМ лічильника.