
- •Темы лекций
- •Лекционный курс
- •Курсовое проектирование
- •10. Бирюков с. Способы построения цепи обратной связи в схемах преобразователей напряжения // схемотехника. 2002. № 7. С. 9 - 10.
- •11. Хвастин с. Обратная связь в многоканальных импульсных обратноходовых преобразователях напряжения // Схемотехника. 2002. № 5. С. 6, 7.
- •12. Косенко в., Косенко с.,Федоров в. Обратноходовой импульсный ип // Радио. 1999. № 12.С. 40 - 41.
- •Конспект лекций (расширенный)
- •1.Назначение и основные пути миниатюризации источников вторичного электропитания
- •2.Основные показатели стабилизированных источников вторичного электропитания
- •3.Классификация систем вторичного электропитания (свэп) и ивэп
- •4.Краткие сведения о напряжении питающей сети ивэп
- •5.Выпрямители.
- •5.1Однополупериодная (однофазная) схема выпрямителя
- •1.Определение параметров трансформатора
- •2.Определение параметров диода
- •3.Коэффициент пульсации выходного напряжения
- •5.Фазность схемы выпрямителя
- •5.2. Однофазная мостовая схема выпрямителя
- •5.3.Схема выпрямителя со средней точкой (двухполупериодная со средней точкой)
- •5.4.Трехфазная однотактная схема (Миткевича) выпрямителя
- •5.5.Трехфазная мостовая схема (Ларионова) выпрямителя
- •5.6.Шестифазные выпрямители по схеме треугольник-звезда и звезда- звезда
- •6. Электрические схемы сглаживающих фильтров.
- •6.3.Расчет индуктивного фильтра
- •6.4. Расчет активно-емкостного фильтра
- •6.5.Расчет емкостного фильтра
- •7.Параметрические стабилизаторы напряжения (псн)
- •7.1.Назначение и основные параметры и характеристики псн
- •7.2.Схема и принцип действия пСн вэ
- •7.3.Коэффициент стабилизации напряжения
- •8. Микросхемный стабилизатор напряжения типа кр142ен19
- •9.Микросхемные линейные стабилизаторы напряжения
- •9.2. Стабилизаторы напряжения с регулируемым выходным напряжением
- •1.1.1. Микросхемные стабилизаторы напряжения с регулирующим транзистором в плюсовом проводе выходной цепи Микросхемы серий 142ен1–142ен2, кр142ен1–кр142ен2
- •9.3. Интегральные стабилизаторы напряжения с фиксированным выходным напряжением
- •1.2.1. Микросхемные стабилизаторы серий 142ен5, 142ен8, 142ен9, кр1157, кр1162 и их основные электрические параметры
- •1.2.2. Примеры применения микросхемных стабилизаторов напряжения 142ен5, 142ен8, 142ен9
- •9.4. Двуполярные интегральные стабилизаторы напряжения
- •1.3.1. Микросхемные стабилизаторы напряжения серий 142ен6а, 142ен6б, к142ен6а – к142ен6г
- •1.3.2. Микросхемы кр142ен15а, кр142ен15б
- •10. Параллельные стабилизаторы серии к115
- •10.1. Параллельные стабилизаторы напряжения серии к11561
- •10.2. Регулируемые параллельные стабилизаторы напряжения серии к1242ер1
- •10.3. Стабилизаторы серии к1278
- •10.4. Мощные регулируемые стабилизаторы напряжения серии к1278ер1
- •Модуль 2.
- •11. Общая характеристика импульсных источников вторичного электропитания (ивэп)
- •2.2.Силовые части исн
- •2. 1. Сравнение импульсных и линейных источников ивэп
- •Глава 2. Импульсные стабилизаторы напряжения
- •2.1. Назначение и области использования
- •2.2.1. Схема и принцип действия понижающего исн
- •2.2.2. Принцип действия повышающего исн
- •Схемы силовых цепей инвертирующих исн приведены на рис. 88.
- •2.3. Методы стабилизации напряжения и эквивалентная схема системы управления импульсными ивэп
- •???Глава 3. Схемотехника Импульсных стабилизаторов
- •3.7. Микросхема кр142еп1 управления импульсным стабилизатором напряжения
- •3.7.2. Импульсный стабилизатор напряжения с шим
- •Пилообразное напряжение часто получают от отдельного устройства – генератора пилообразного напряжения (гпн).
- •Импульсные стабилизаторы напряжения на ис tl494.
- •Примечание - подробнее о самой микросхеме и принципе ее работы показа-но далее в параграфе 2.4.2. - шим регулятор на ис tl494.
- •3.1.1. Принципиальная схема импульсного понижающего стабилизатора на ис tl494
- •3.1.2. Принципиальная схема импульсного повышающего стабилизатора на ис tl494
- •3.1.3. Принципиальная схема импульсного инвертирующего стабилизатора на ис tl494
- •3.7.2. Импульсный стабилизатор напряжения с шим
- •Пилообразное напряжение часто получают от отдельного устройства – генератора пилообразного напряжения (гпн).
- •2.4. Системы управления исн на базе интегральных схем (ис)
- •2.4.1. Основные блоки ис для построения систем управления (су)
- •2.4.2. Шим регулятор на ис tl494 Интегральная микросхема управления tl494 двухтактным полумостовым импульсным преобразователем напряжения.
- •3.4. Импульсный стабилизатор напряжения на микросхеме lм2576аdj
- •Основные технические характеристики микросхем этой серии:
- •Частота коммутации, кГц……………………………………...… 52
- •Корпус………………………….……………пластмассовый то220-5
- •3.5. Импульсные стабилизаторы напряжения на ис uс3843
- •3.5.1. Импульсный стабилизатор напряжения с защитой от перегрузки по току и с повышенным кпд [17]
- •Входное напряжение, в……...........…..........................................8…16
- •3.5.2. Повышающий исн
- •3.6. Импульсный стабилизатор напряжения с n-канальным силовым транзистором
- •Модуль 3.
- •Глава 4. Функциональные узлы и схемотехника импульсных преобразователей напряжения ивэп
- •4.1. Структурные схемы импульсных источников питания
- •1.3. Классификация импульсных источников электропитания
- •4.2. Полумостовые преобразователи напряжения
- •4.2.1. Входные цепи
- •4.2.2. Усилители мощности
- •4.2.3.Упрощенная схема полумостового усилителя мощности
- •4.2.4. Согласующий каскад
- •4.3. Выходные цепи
- •4.4. Стабилизация выходного напряжения
- •4.10.2. Способы построения цепи обратной связи в схемах преобразователей напряжения
- •4.10.3. Обратная связь в многоканальных импульсных обратноходовых преобразователях напряжения
- •Защита 4.5. Основные принципы построения различных вариантов схем защитного отключения
- •Защита - вниз 4.6. Схема «медленного пуска»
- •4.7. Электрические схемы двухтактных полумостовых преобразователей напряжения
- •6. Основы пРоектирование импульсных преобразователей напряжения
- •6.1. Методика расчета сетевого ивэп на ис кр1033еу15а (с примером)
- •6.2. Методика расчета ивэп для зарядки аккумуляторных батарей (автомобильных)
- •6.6. Подбор отечественных аналогов импортных трансформаторов в обратноходовом преобразователе
- •6.7. Дроссели для импульсных источников питания на ферритовых кольцах
- •6.8. Проектирование обратноходовых иИп topSwitch-II с помощью программы vds
- •Глава 7. Импульсные источники питания на микроконтроллерах
- •7.2. Импульсный преобразователь напряжения на микроконтроллере фирмы Microchip
- •Основные технические характеристики
- •Номинальное выходное напряжение каналов, в 12 или 5
- •7.3. Автомобилный релейный импульсный источник питания на микроконтроллере фирмы Microchip
- •7.4. Источник питания проблескового фонаря на светодиодах
- •7.5. Зарядное устройство на основе микроконтроллера ht46r47 фирмы Holtek Semiconductor
- •Особенности зарядки аккумуляторов
- •Защита надо связать гл.2 со схемой медленного пуска
- •Глава 2. Схемы простейших устройств защиты и зарядки
- •2.1. Стабилизатор напряжения на микросхеме кр142ен19 с защитой
- •Емкостной – с– фильтр
- •Трехфазная мостовая схема выпрямителя
- •Шестифазная однотактная схема выпрямителя
- •На число, месяц, год
- •6.Наумов н.Н.
- •9. Алексеев г/б
- •III. Сведения по выплатам (в разрезе оказываемых услуг):
- •2.За предыдущие годы долг капо составляет:
- •Расход:
- •Спасибо !!! конец - январь -2013 –год
- •Где эти деньги (684000 руб.) я не знаю
- •Конец гр.05. Наихудший случай:
- •После чего общая сумма оплаты за обучение в 2012 году должна быть равна:
- •А с учетом остатка за 2011 г., равного 460777 (517559 руб.), получим:
- •Уважаемая галина ивановна !
- •Сведения о студентах
3.4. Импульсный стабилизатор напряжения на микросхеме lм2576аdj
Основное преимущество импульсных стабилизаторов по сравнению с аналоговыми - высокий КПД, поскольку работающий в переключательном режиме регулирующий транзистор рассеивает минимальную мощность. Благодаря этому не требуется большой теплоотвод. Кроме того, в регулируемых стабилизаторах можно осуществить непрерывное перекрытие всего интервала выходного напряжения, без введения под интервалов (без дополнительных переключений), что особенно важно для лабораторных блоков питания.
Современные специализированные микросхемы позволяют значительно упростить импульсные стабилизаторы напряжения и снизить уровень импульсных помех, а применение мощных быстродействующих диодов с барьером Шотки практически решает проблему сквозного тока регулирующего транзистора.
Сегодня такие микросхемы выпускают многие отечественные пред-приятия и зарубежные фирмы. Например, фирма National Semiconductor производит несколько серий микросхем для интегральных импульсных стабилизаторов напряжения. Одна из них - LМ2576.
Микросхемы выпускают в нескольких вариантах: с фиксированными значениями выходного напряжения 3,3, 5, 12, 15 В; с выходным напряже-нием, регулируемым в пределах 1,2...37 В (с индексом ADJ - Adjast), «высо-ковольтный» (НV) вариант (максимальное входное напряжение - 63 В).
Рис. 50
Микросхемы выпускают в нескольких вариантах: с фиксированными значениями выходного напряжения 3,3;5;12;15;В; с выходными напряжением в пределах 1,2…37 В (с индексом ADJ-Adjast), «высоковольтный» (HV) вариант (максимальное входное напряжение – 63 В). На рис. 50 показана структурная схема LM2576, где: 1 - внутренний регулятор, 2 - ON/OFF, 3 - компенсатор ошибки по току,4 - компаратор, 6 – драйвер, 7 – Uоп, 8 – генератор, 9 – сброс, 10 – тепл. защита , 11 - ограничитель; выводы: 1 - вход, 2 – выход, 3,5 – общий, 4 – обратная связь.
Основные технические характеристики микросхем этой серии:
Максимально допустимое входное напряжение, В…....……… 45
Интервал входного напряжения, В........................................4,75…40
Номинальное напряжение сигнала обратной связи, В…....… 1,23
Интервал напряжения обратной связи, В......................1,217 - 1,243
Импульсный коммутируемый ток, А……………………...………5,8
Средний ток, А………………………………………………….....…3
Частота коммутации, кГц……………………………………...… 52
КПД,%…………………………………………………………..… 77
Тепловое сопротивление кристалл-корпус, °С/Вт………....…..……2
Корпус………………………….……………пластмассовый то220-5
В предлагаемом стабилизаторе максимальное выходное напряжение 30 В, оно ограничено допустимым напряжением питания ОУ узла токовой зашиты. Минимальное напряжение - 1,25 В. Максимальный выходной ток - до 3 А. Амплитуда пульсаций на выходе (от пика до пика) при токе нагрузки 1 А не превышает 20 мВ. Выходное сопротивление - не более 0,1 Ом. Остальные электрические параметры соответствуют приведенным справочным данным микросхемы группы Adjast.
Стабилизатор снабжен узлом защиты от перегрузки по току с регулируемым порогом срабатывания. Защита - триггерного типа: повторное включение осуществляется нажатием на кнопку «Пуск». После включения питания для запуска стабилизатора также необходимо нажать на эту кнопку. Минимальный ток срабатывания защиты - не более 100 мА, максимальный - устанавливают в процессе налаживания исходя из конкретных требований к блоку питания.
Устройство, схема которого приведена на рис.51, включает собственно стабилизатор и узел защиты от перегрузки по току.
DA1
Рис. 51
Стабилизатор выполнен по типовой схеме включения, приведенной в справочнике фирмы-изготовителя. Напряжение постоянного тока, сглаженное конденсатором С, при открытом транзисторе VT1 ИС DA1 поступает на вход (вывод 1) микросхемы DА1. С ее выхода (вывод 2) импульсное напряжение подается на накопительный дроссель L1 и конденсатор С4. Выходное напряжение на нагрузке сглаживает фильтр L2С8. При выключении регулирующего транзистора микросхемы диод VD7 открывается и накопленная энергия в L1С4 передается в нагрузку.
Сигнал обратной связи через резистивный делитель напряжения R1R4R5 подают на вход обратной связи (вывод 4) микросхемы. Регулируют выходное напряжение двумя переменными резисторами R4,R5. Такое включение обеспечивает высокую точность установки напряжения. Следует подчеркнуть, что напряжение обратной связи снимают не сo выхода стабилизатора, что, на первый взгляд, было бы абсолютно логично. Дело в том, что вносимая фильтром временная задержка приводит к возникновению своего рода ударного самовозбуждения, характер которого зависит от выходного напряжения и нагрузки. И хотя на выходе стабилизатора паразитная генерация малозаметна (ее сглаживает конденсатор С8), такой режим является неприемлемым, поскольку его последствия непредсказуемы.
Датчик тока - резистор R6, включенный между накопительным дросселем и сглаживающим фильтром. Для регулирования порога срабатывания параллельно ему подключен делитель напряжения, состоящий из переменного резистора R8 и постоянного R7, который ограничивает верхний предел регулирования. С движка переменного резистора R8 напряжение подают на не инвертирующий вход компаратора узла защиты.
Сопротивление переменного резистора R8 целесообразно выбрать в пределах 47-330 Oм. Затем по известным формулам для делителя напряжения несложно определить и сопротивление резистора R7, устанавливающего максимальный ток защиты: R7 = R8Uвых/(IнR6 - Uвых), где Uвых - выходное напряжение делителя (входное напряжение компаратора), Iн - ток нагрузки. Для уменьшения потерь мощности датчик тока выполнен с минимальным сопротивлением (0,01 Ом): при максимальном токе нагрузки 3 А рассеиваемая мощность составляет всего 90 мВт. Но в этом случае минимально и падение напряжения на датчике - при токе 3 А оно равно 30 мВ, а при 100 мА - 1 мВ. Из-за небольшого напряжения на датчике тока провода, идущие к переменному резистору R8, целесообразно взять экранированными. Экран следует соединить с общим проводом устройства.
Дроссели L1, L2 выполнены на кольцевых магнитопроводах К20H12H6 из феррита М3000НМ. Алмазной ножовкой в кольцах пропиливают зазор, в который для сохранения механической прочности на сжатие вклеивают прокладку из немагнитного материала, например стеклотекстолита. Кольцо обматывают лентой из фторопласта, лакошелка или изоляционной ленты. При максимальном токе нагрузки 3 А сечение провода должно быть не менее 0,75 мм². Работать с таким проводом неудобно, к тому же из-за поверхностного эффекта будет снижаться эффективное сечение. По указанным причинам применен не одиночный провод, а жгут, свитый из 9 проводов ПЭВ 0,35. Вместо числа витков удобнее пользоваться другим критерием - длиной жгута, равной 1,5 м. Изготовленный жгут наматывают до полного заполнения «окна», оставшуюся часть обрезают. Ориентировочные значения индуктивности дросселей - 180...250 мкГн.
При токе нагрузки 1,5 А микросхему DА1 необходимо снабдить теплоотводом площадью 5 см².
Для стабилизаторов с выходным током не более 1 А можно применить микросхему LM2575, имеющую максимально допустимый ток 1 А. Остальные ее характеристики соответствуют LМ2576. В этом случае можно применить диод VD7 с меньшим допустимым прямым током, например, 1N5217, 1N5819, 11DQ06.
Узел токовой защиты собран на сдвоенном ОУ LМ358 [сделть ссылку - на лаб. раб., когда она выйдет из печати].