- •Темы лекций
- •Лекционный курс
- •Курсовое проектирование
- •10. Бирюков с. Способы построения цепи обратной связи в схемах преобразователей напряжения // схемотехника. 2002. № 7. С. 9 - 10.
- •11. Хвастин с. Обратная связь в многоканальных импульсных обратноходовых преобразователях напряжения // Схемотехника. 2002. № 5. С. 6, 7.
- •12. Косенко в., Косенко с.,Федоров в. Обратноходовой импульсный ип // Радио. 1999. № 12.С. 40 - 41.
- •Конспект лекций (расширенный)
- •1.Назначение и основные пути миниатюризации источников вторичного электропитания
- •2.Основные показатели стабилизированных источников вторичного электропитания
- •3.Классификация систем вторичного электропитания (свэп) и ивэп
- •4.Краткие сведения о напряжении питающей сети ивэп
- •5.Выпрямители.
- •5.1Однополупериодная (однофазная) схема выпрямителя
- •1.Определение параметров трансформатора
- •2.Определение параметров диода
- •3.Коэффициент пульсации выходного напряжения
- •5.Фазность схемы выпрямителя
- •5.2. Однофазная мостовая схема выпрямителя
- •5.3.Схема выпрямителя со средней точкой (двухполупериодная со средней точкой)
- •5.4.Трехфазная однотактная схема (Миткевича) выпрямителя
- •5.5.Трехфазная мостовая схема (Ларионова) выпрямителя
- •5.6.Шестифазные выпрямители по схеме треугольник-звезда и звезда- звезда
- •6. Электрические схемы сглаживающих фильтров.
- •6.3.Расчет индуктивного фильтра
- •6.4. Расчет активно-емкостного фильтра
- •6.5.Расчет емкостного фильтра
- •7.Параметрические стабилизаторы напряжения (псн)
- •7.1.Назначение и основные параметры и характеристики псн
- •7.2.Схема и принцип действия пСн вэ
- •7.3.Коэффициент стабилизации напряжения
- •8. Микросхемный стабилизатор напряжения типа кр142ен19
- •9.Микросхемные линейные стабилизаторы напряжения
- •9.2. Стабилизаторы напряжения с регулируемым выходным напряжением
- •1.1.1. Микросхемные стабилизаторы напряжения с регулирующим транзистором в плюсовом проводе выходной цепи Микросхемы серий 142ен1–142ен2, кр142ен1–кр142ен2
- •9.3. Интегральные стабилизаторы напряжения с фиксированным выходным напряжением
- •1.2.1. Микросхемные стабилизаторы серий 142ен5, 142ен8, 142ен9, кр1157, кр1162 и их основные электрические параметры
- •1.2.2. Примеры применения микросхемных стабилизаторов напряжения 142ен5, 142ен8, 142ен9
- •9.4. Двуполярные интегральные стабилизаторы напряжения
- •1.3.1. Микросхемные стабилизаторы напряжения серий 142ен6а, 142ен6б, к142ен6а – к142ен6г
- •1.3.2. Микросхемы кр142ен15а, кр142ен15б
- •10. Параллельные стабилизаторы серии к115
- •10.1. Параллельные стабилизаторы напряжения серии к11561
- •10.2. Регулируемые параллельные стабилизаторы напряжения серии к1242ер1
- •10.3. Стабилизаторы серии к1278
- •10.4. Мощные регулируемые стабилизаторы напряжения серии к1278ер1
- •Модуль 2.
- •11. Общая характеристика импульсных источников вторичного электропитания (ивэп)
- •2.2.Силовые части исн
- •2. 1. Сравнение импульсных и линейных источников ивэп
- •Глава 2. Импульсные стабилизаторы напряжения
- •2.1. Назначение и области использования
- •2.2.1. Схема и принцип действия понижающего исн
- •2.2.2. Принцип действия повышающего исн
- •Схемы силовых цепей инвертирующих исн приведены на рис. 88.
- •2.3. Методы стабилизации напряжения и эквивалентная схема системы управления импульсными ивэп
- •???Глава 3. Схемотехника Импульсных стабилизаторов
- •3.7. Микросхема кр142еп1 управления импульсным стабилизатором напряжения
- •3.7.2. Импульсный стабилизатор напряжения с шим
- •Пилообразное напряжение часто получают от отдельного устройства – генератора пилообразного напряжения (гпн).
- •Импульсные стабилизаторы напряжения на ис tl494.
- •Примечание - подробнее о самой микросхеме и принципе ее работы показа-но далее в параграфе 2.4.2. - шим регулятор на ис tl494.
- •3.1.1. Принципиальная схема импульсного понижающего стабилизатора на ис tl494
- •3.1.2. Принципиальная схема импульсного повышающего стабилизатора на ис tl494
- •3.1.3. Принципиальная схема импульсного инвертирующего стабилизатора на ис tl494
- •3.7.2. Импульсный стабилизатор напряжения с шим
- •Пилообразное напряжение часто получают от отдельного устройства – генератора пилообразного напряжения (гпн).
- •2.4. Системы управления исн на базе интегральных схем (ис)
- •2.4.1. Основные блоки ис для построения систем управления (су)
- •2.4.2. Шим регулятор на ис tl494 Интегральная микросхема управления tl494 двухтактным полумостовым импульсным преобразователем напряжения.
- •3.4. Импульсный стабилизатор напряжения на микросхеме lм2576аdj
- •Основные технические характеристики микросхем этой серии:
- •Частота коммутации, кГц……………………………………...… 52
- •Корпус………………………….……………пластмассовый то220-5
- •3.5. Импульсные стабилизаторы напряжения на ис uс3843
- •3.5.1. Импульсный стабилизатор напряжения с защитой от перегрузки по току и с повышенным кпд [17]
- •Входное напряжение, в……...........…..........................................8…16
- •3.5.2. Повышающий исн
- •3.6. Импульсный стабилизатор напряжения с n-канальным силовым транзистором
- •Модуль 3.
- •Глава 4. Функциональные узлы и схемотехника импульсных преобразователей напряжения ивэп
- •4.1. Структурные схемы импульсных источников питания
- •1.3. Классификация импульсных источников электропитания
- •4.2. Полумостовые преобразователи напряжения
- •4.2.1. Входные цепи
- •4.2.2. Усилители мощности
- •4.2.3.Упрощенная схема полумостового усилителя мощности
- •4.2.4. Согласующий каскад
- •4.3. Выходные цепи
- •4.4. Стабилизация выходного напряжения
- •4.10.2. Способы построения цепи обратной связи в схемах преобразователей напряжения
- •4.10.3. Обратная связь в многоканальных импульсных обратноходовых преобразователях напряжения
- •Защита 4.5. Основные принципы построения различных вариантов схем защитного отключения
- •Защита - вниз 4.6. Схема «медленного пуска»
- •4.7. Электрические схемы двухтактных полумостовых преобразователей напряжения
- •6. Основы пРоектирование импульсных преобразователей напряжения
- •6.1. Методика расчета сетевого ивэп на ис кр1033еу15а (с примером)
- •6.2. Методика расчета ивэп для зарядки аккумуляторных батарей (автомобильных)
- •6.6. Подбор отечественных аналогов импортных трансформаторов в обратноходовом преобразователе
- •6.7. Дроссели для импульсных источников питания на ферритовых кольцах
- •6.8. Проектирование обратноходовых иИп topSwitch-II с помощью программы vds
- •Глава 7. Импульсные источники питания на микроконтроллерах
- •7.2. Импульсный преобразователь напряжения на микроконтроллере фирмы Microchip
- •Основные технические характеристики
- •Номинальное выходное напряжение каналов, в 12 или 5
- •7.3. Автомобилный релейный импульсный источник питания на микроконтроллере фирмы Microchip
- •7.4. Источник питания проблескового фонаря на светодиодах
- •7.5. Зарядное устройство на основе микроконтроллера ht46r47 фирмы Holtek Semiconductor
- •Особенности зарядки аккумуляторов
- •Защита надо связать гл.2 со схемой медленного пуска
- •Глава 2. Схемы простейших устройств защиты и зарядки
- •2.1. Стабилизатор напряжения на микросхеме кр142ен19 с защитой
- •Емкостной – с– фильтр
- •Трехфазная мостовая схема выпрямителя
- •Шестифазная однотактная схема выпрямителя
- •На число, месяц, год
- •6.Наумов н.Н.
- •9. Алексеев г/б
- •III. Сведения по выплатам (в разрезе оказываемых услуг):
- •2.За предыдущие годы долг капо составляет:
- •Расход:
- •Спасибо !!! конец - январь -2013 –год
- •Где эти деньги (684000 руб.) я не знаю
- •Конец гр.05. Наихудший случай:
- •После чего общая сумма оплаты за обучение в 2012 году должна быть равна:
- •А с учетом остатка за 2011 г., равного 460777 (517559 руб.), получим:
- •Уважаемая галина ивановна !
- •Сведения о студентах
Модуль 2.
11. Общая характеристика импульсных источников вторичного электропитания (ивэп)
В отличие от традиционных линейных ИВЭП, предполагающих гаше-ние излишнего нестабилизированного напряжения на проходном транзис-торе, работающем в линейном режиме, импульсные ИВЭП используют иные методы и физические явления для генерации стабилизированного напря-жения, а именно: эффект накопления энергии в катушках индуктивности, а также возможность высокочастотной трансформации и преобразования накопленной энергии в постоянное напряжение.
Применение транзисторов в режиме переключения позволяет при значительной разнице в уровнях напряжения питания и напряжения на нагрузке получить КПД преобразования близкий к единице. Если источник постоянного тока подключать к нагрузке с помощью периодически замыкаемого и размыкаемого ключа, то среднее значение напряжения на нагрузке будет зависеть от длительности замкнутого и разомкнутого состояния ключа и частоты работы ключа [1 - 13].
Сетевые импульсные источники питания непосредственно выпрямляют и фильтруют напряжение сети переменного тока без использования 50/60 Гц трансформатора (по этой причине их иногда называют - бестрансформатор-ные). Полученное в результате этого напряжение постоянного тока фильтруется и коммутируется мощным ключом, а затем преобразуется высокочастотным трансформатором, и, наконец, выпрямляется и фильтруется снова. Из-за высокой частоты переключения, которая составляет от 20 кГц до 400 кГц, трансформатор, дроссель и конденсаторы фильтров имеют намного меньшие размеры, чем их 50/60 Гц эквивалент.
Однокристалльные микросхемы АС/DC конверторов применяются обычно в недорогих системах, работающих от сети переменного тока, потребляющих небольшой ток (до 100 мА) и не предъявляющих высоких требований к качеству питающего напряжения. Основной недостаток подобных устройств – это отсутствие гальванической развязки выходного напряжения от напряжения сети. Как правило, преобразователи переменного напряжения в постоянное обеспечивают одно, максимум два выходных напряжения, что иногда затрудняет их использование в источниках питания. В последнее время появились приборы, обеспечивающие выходной ток до 1,5 А, что позволяет значительно расширить сферу их применения.
DС/DC конверторы используют принцип действия импульсных источников питания, но применяются для того, чтобы преобразовать напряжение постоянного тока одного уровня в напряжение постоянного тока другого уровня, обычно хорошо стабилизированное. Эти устройства используются там, где электронное оборудование должно питаться от батареи или другого автономного источника постоянного тока.
Конверторы, выполненные на микросхемах широко используются для преобразования и распределения напряжения постоянного тока для питания потребителей. Это напряжение питания обычно поступает в систему от сетевого источника питания. Сетевое напряжение, как правило, нестабилизированное и имеет значительную шумовую компоненту.
Другое распространенное применение подобных конверторов – это преобразование напряжения аккумуляторной батареи (или другого первичного источника питания) в напряжение требуемого номинала, необходимое для питания различных схем потребителей. Типичные значения напряжения батареи обычно равны 1.5, 3.0, 3.6, 4.5, 9, 12, 24, 48 В постоянного тока, причем каждый номинал используется для определенных применений. Напряжение батареи может изменяться в широких пределах. Например, напряжение двенадцативольтовой системы транспортного средства может подниматься до 15 В или выше во время зарядки и опускаться до 6 В при запуске двигателя. При таком широком диапазоне изменения сети необходимо использовать DС/DC конвертор, с тем, чтобы получить необходимое по величине и стабилизированное выходное напряжение, требуемое для питания электронных потребителей на борту транспортного средства.
Экономически и технологически оправдано конструировать ИВЭП по схеме вторичного импульсного преобразователя для устройств с током потребления 1 - 5 А, для бесперебойных ИВЭП к системам видеонаблюдения и охраны, для усилителей низкой частоты, радиостанций, зарядных устройств и во многих других применениях.
Отличительная черта импульсных ИВЭП - это лучшие по сравнению с линейными ИВЭП массогабаритные характеристики выпрямителя, фильтра, преобразователя, стабилизатора напряжения. Однако их отличает большой уровень помех, поэтому при конструировании необходимо уделить внимание экранированию и подавлению высокочастотных составляющих в шине питания.
В последнее время получили достаточно широкое распространение импульсные ИВЭП, построенные на основе высокочастотного преобразователя с бестрансформаторным входом. Эти устройства, питаясь от промышленной сети, не содержат в своем составе громоздких низкочастотных силовых трансформаторов, а преобразование напряжения осуществляется высокочастотным преобразователем на частотах десятки, сотни кГц. Такие источники питания обладают на порядок лучшими массогабаритными показателями по сравнению с линейными, а их КПД может достигать 90 % и более. с импульсным высокочастотным преобразователем существенно улучшают многие характеристики устройств, питаемых от этих источников.
Ключевой
элемент (обычно применяют биполярные
или МДП-транзисторы), работающий с
частотой частотой, периодически на
короткое время (не более 50 % времени)
прикладывает к катушке индуктивности
полное входное нестабилизированное
напряжение. Импульсный ток, протекающий
при этом через катушку, обеспечивает
накопление запаса энергии в её магнитном
поле
на каждом импульсе. Запасенная таким
образом энергия из катушки передастся
в нагрузку (либо напрямую, с использованием
выпрямляющего диода, либо через вторичную
обмотку с последующим выпрямлением),
конденсатор выходного сглаживающего
фильтра обеспечивает постоянство
выходного напряжения и тока. Стабилизация
выходного напряжения обеспечивается
автоматической регулировкой ширины
или частоты следования импульсов на
ключевом элементе (для слежения за
выходным напряжением предназначена
цепь обратной связи).
Такая, хотя и достаточно сложная, схема позволяет существенно повысить КПД всего устройства. В данном случае, кроме самой нагрузки в схеме отсутствуют силовые элементы, рассеивающие значительную мощность. Ключевые транзисторы работают в режиме насыщенного ключа (т.е. падение напряжения на них мало) и рассеивают мощность только в достаточно короткие временные интервалы (время подачи импульса). Помимо этого, за счет повышения частоты преобразования можно существенно увеличить мощность и улучшить массогабаритные характеристики.
Миниатюризации и повышению КПД при разработке и конструировании импульсных источников питания способствует применение нового класса полупроводниковых инверторов – МДП-транзисторов, а также: мощных диодов с быстрым обратным восстановлением, диодов Шоттки, сверхбыстродействующих диодов, полевых транзисторов с изолированным затвором, интегральных схем управления ключевыми элементами. Все эти элементы доступны на отечественном рынке и могут использоваться в конструировании высокоэффективных источников питания, преобразова-телей, систем зажигания двигателей внутреннего сгорания (ДВС), систем запуска ламп дневного света (ЛДС). Большой интерес может вызвать класс силовых приборов под названием HEXSense – МДП-транзисторы со считыванием тока. Они являются идеальными переключающими элементами для импульсных источников питания с готовым управлением. Возможность считывать ток ключевого транзистора может быть использована в импульсных ИВЭП для обратной связи по току, требуемой для контроллера широтно-импульсной модуляции. Этим достигается упрощение конструкции источника питания – исключение из него токовых резисторов и трансформаторов.
Важным технологическим преимуществом импульсных ИВЭП является возможность построения на их основе малогабаритных сетевых ИВЭП с гальванической развязкой от сети для питания самой разнообразной аппаратуры. Такие ИВЭП строятся без применения громоздкого низкочастот-ного силового трансформатора по схеме высокочастотного преобразователя. Это, собственно, типовая схема импульсного ИВЭП с понижением напряжения, где в качестве входного напряжения используется выпрямлен-ное сетевое напряжение, а в качестве накопительного элемента - высокочастотный трансформатор (малогабаритный и с высоким КПД), со вторичной обмотки которого и снимается выходное стабилизированное напряжение (этот трансформатор обеспечивает также гальваническую развязку с сетью).
На летательных аппаратах, наземных и морских транспортных средствах, других автономных устройствах, где энергоресурсы весьма ограничены, а масса и объем имеют решающее значение, в системах электропитания получили широкое распространение импульсные стабилизаторы постоянного напряжения (DC/DC). Такие стабилизаторы применяются для питания потребителей большой мощности и в тех случаях, когда напряжение первичной системы электроснабжения изменяется в больших пределах [1-13].
Стабилизатор напряжения, регулирующее усройство которого работает в импульсном режиме (в режиме переодического переключения с частотой 20…200 кГц и более), называется стабилизатором с импульсным регулированием или импульсным стабилизатором напряжения (ИСН).
Импульсный стабилизатор состоит из силовой части и системы управ-ления, в качестве которой используются специальные интегральные схемы (ИС). В качестве РУ силовой части ИСН обычно используются мощные биполярные, полевые и IGBT транзисторы, которые управляются от ИС.
По способу построения силовой части различают при типа ИСН. Стабилизатор напряжения (СН) с выходным напряжением меньшим входного, называют «понижающим» ИСН. От импульсного стабилизатора можно получить выходное напряжение, превышающее входное, в этом случае такой ИСН называют «повышающим». Когда необходимо получить выходное напряжение с полярностью, обратной полярности входного, используют инвертирующий ИСН.
Использование импульсного режима работы регулирующего транзистора ИСН, который переодически переключается из режима насыщения в режим отсечки, приводит к тому, что резко уменьшается мощность, рассеиваемая регулирующим транзистором, значительно повышается КПД ИСН (приближенно он составляет 70…90% и более), в результате чего уменьшаются масса и габариты теплоотводящих устройств. В этом существенное преимущество ИВЭП с ИСН по сравнению с ИВЭП, выполненными на базе непрерывных стабилизаторов напряжения.
К недостаткам импульсных ИВЭП можно отнести: наличие высокого уровня импульсных шумов на выходе, сложность схемы и надежность, меньшую чем у линейных ИВЭП, необходимость применения дорогосто-ящих высоковольтных высокочастотных компонентов. При конструировании сетевых импульсных ИВЭП нужно быть крайне осторожными, так как многие элементы таких схем находятся под высоким напряжением.
Основные схемы ИСН описываются с помощью системы математических выражений, определяющих параметры электрических процессов в силовых цепях устройства, энергитических соотношений. Инженерный анализ ИСН основан на кусочно-линейной аппроксимации тока силового дросселя, что дает малую погрешность при расчете схем с высоким КПД [1- 22 ].
